Erratum


Wenzhi Liu1,2,*, Mengkao Li3,*, Xiangming Chen2, Dakai Zhang1,4, Lin Wei2, Zicheng Zhang1, Shuang Wang2, Li Meng2, Shan Zhu1,4, Baosheng Li1,5

1 Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong Province, P. R. China; 2 Department of Clinical Oncology, Taian Central Hospital, Taian, Shandong Province, P. R. China; 3 Department of Neurosurgery, Taian Central Hospital, Taian, Shandong Province, P. R. China; 4 University of Jinan, School of Medicine and Life Sciences, Shandong Academy of Medical Sciences, Jinan, Shandong Province, P. R. China; 5 Shandong Academy of Medical Sciences, Jinan, Shandong Province, P. R. China. *Equal contributors.

Received April 4, 2016; Accepted April 7, 2016; Epub June 1, 2016; Published June 15, 2016

Abstract: Esophageal squamous cell carcinoma (ESCC) is the predominant pathological type of esophageal carcinoma in Asia. MicroRNAs (miRNAs) are a class of 19-22-nucleotide non-coding RNAs acting on target mRNAs that function as either oncogenes or anti-oncogenes. It has been confirmed that miR-373 expression varies among different tumor types. However, its mechanism is still unclear in ESCC. In our current study, we found that miR-373 expression was upregulated in ESCC tissues compared with matched adjacent normal tissues, as well as in the plasma of ESCC patients compared with that of healthy volunteers. Overexpression of miR-373 in ECA109 cells enhanced proliferation, G1-phase cell proportion, migration, and invasion. On the other hand, suppression of miR-373 in KYSE410 cells decreased proliferation, G1-phase cell proportion, migration, and invasion and also improved cell apoptosis. Moreover, we found that TIMP3, which was reported to suppress invasion and metastasis of ESCC, was a direct target of miR-373. Overexpression of miR-373 in ECA109 caused a reduction of TIMP3 mRNA and protein, whereas suppression of miR-373 in KYSE410 led to an increase of TIMP3 mRNA and protein. Introducing TIMP3 in miR-373 over-expressed cells or knocking down TIMP3 in miR-373 suppressed cells could partially abrogate the effect of miR-373 on migration and invasion. Therefore, these results prove that as an oncogene, miRNA-373 would be an important and reliable biomarker for ESCC diagnosis and treatment by targeting TIMP3.

Keywords: Esophageal cancer, microRNA-373, TIMP3, oncogene

On page 1, the correct author affiliations are

Wenzhi Liu1,2,*, Mengkao Li3,*, Xiangming Chen2, Dakai Zhang1,4, Lin Wei2, Zicheng Zhang1, Shuang Wang2, Li Meng2, Shan Zhu1,4, Baosheng Li1,5

1 Department of Radiation Oncology, Shandong cancer hospital affiliated to Shandong University, Shandong University, Jinan, Shandong Province, P. R. China; 2 Department of Clinical Oncology, Taian Central Hospital, Taian, Shandong Province, P. R. China; 3 Department of Neurosurgery, Taian Central Hospital, Taian, Shandong Province, P. R. China; 4 University of Jinan, School of Medicine and Life Sciences, Shandong Academy of Medical Sciences, Jinan, Shandong Province, P. R. China; 5 Shandong Academy of Medical Sciences, Jinan, Shandong Province, P. R. China.

*Equal contributors.

On page 12, the correct corresponding address is: Dr. Baosheng Li.
miR-373 promotes migration and invasion in ESCC

Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, 440 Jiyang Road, Jinan 250117, Shandong Province, P. R. China. Tel: +0086-531 6762 6161; Fax: +0086-531 67626161; E-mail: baoshli1963@163.com

Address correspondence to: Dr. Baosheng Li, Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, 440 Jiyang Road, Jinan 250117, Shandong Province, P. R. China. Tel: +0086-531 6762 6161; Fax: +0086-531 67626161; E-mail: baoshli1963@163.com