Original Article
Molecular mechanism underlying the pharmacological interactions of the protein kinase C-β inhibitor enzastaurin and erlotinib in non-small cell lung cancer cells

Nele Van Der Steen1,2,3, Lisette Potze1, Elisa Giovannetti1, Andrea Cavazzoni4, Rob Ruijtenbeek6, Christian Rolfo2,5, Patrick Pauwels2,3, Godefridus J Peters1

1Dept. Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands; 2Center for Oncological Research, University of Antwerp, Belgium; 3Department of Pathology, Antwerp University Hospital, Belgium; 4Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy; 5Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Belgium; 6Pamgene,'s Hertogenbosch, The Netherlands

Received August 12, 2016; Accepted January 12, 2017; Epub April 1, 2017; Published April 15, 2017

Abstract: Erlotinib is commonly used as a second line treatment in non-small cell lung cancer patients with sensitizing EGFR mutations. In EGFR-wild type patients, however the results are limited. Therefore we evaluated whether the combination of the Protein kinase C-β inhibitor enzastaurin with erlotinib could enhance the effect in the A549 and H1650 cell lines. Cytotoxicity of erlotinib, enzastaurin and their 72-h simultaneous combination was assessed with the MTT assay. The pharmacologic interaction was studied using the method of Chou and Talalay, cell cycle perturbations were assessed by flow cytometry and modulation of ERK1/2 and AKT phosphorylation was determined with ELISA. For protein phosphorylation of GSK3β we performed Western Blot analysis and a Pamgene phosphorylation array, while RT-PCR was used to investigate VEGF and VEGFR-2 expression before and after drug treatments. A synergistic interaction was found in both cell lines with mean CI of 0.58 and 0.63 in A549 and H1650 cells, respectively. Enzastaurin alone and in combination with erlotinib increased the percentage of cells in S and G2M phase, mostly in H1650 cells, while AKT, ERK1/2 and GSK3β phosphorylation were reduced in both cell lines. VEGF expression decreased 5.0 and 6.9 fold in A549 cells after enzastaurin alone and with erlotinib, respectively, while in H1650 only enzastaurin caused a relevant reduction in VEGF expression. The array showed differential phosphorylation of EGFR, GSK3β, EphA1 and MK14. In conclusion, enzastaurin is a protein kinase Cβ inhibitor, working on several cellular signaling pathways that are involved in proliferation, apoptosis and angiogenesis. These features make it a good compound for combination therapy. In the present study the combination of enzastaurin and erlotinib gives synergistic results, warranting further investigation.

Keywords: Protein kinase C-beta, epidermal growth factor receptor, erlotinib, enzastaurin, non-small cell lung cancer, GSK-beta, ERK, AKT

Introduction
Non-small cell lung cancer (NSCLC) is currently the leading cause of cancer incidence and mortality worldwide [1]. About 70% of patients are diagnosed with an advanced stage NSCLC. The standard first line treatment for these patients are platinum-doublet based regimens [2], unless molecular profiling shows the presence of actionable mutations/gene rearrangements. In case of EGFR-mutations or ALK rearrangements, EGFR- or ALK- inhibitors have been approved. However, these subgroups are limited to adenocarcinoma histology and comprise about 8% and 3% respectively of this patient population [3, 4].

The EGFR signaling pathway is an important driver pathway which regulates growth, proliferation, differentiation and survival in mammalian cells [5]. The EGFR receptor contains an extracellular domain that is involved in ligand binding and receptor dimerization, a hydrophobic domain, involved in interactions between the
The synergy of enzastaurin and erlotinib in NSCLC

Receptor and the cell membrane, and an intracellular domain with tyrosine kinase enzymatic activity. Stimulation by the ligand EGF or related growth factors leads to receptor homodimerization or hetero-dimerization and thereby activates downstream signaling, involving Ras and Phosphatidyl Inositol 3 Kinase (PI3K) pathways amongst others (Figure 1) [5].

Erlotinib is an oral low-molecular weight quinazoline-based agent, which acts as a selective and reversible kinase inhibitor of the epidermal growth factor receptor (EGFR) and is used to treat NSCLC patients with activating EGFR mutations [2], thereby inhibiting downstream signaling. Even though erlotinib is currently used in the treatment of several different cancers, of the minority of patients that present with EGFR-sensitizing mutations, 70-80% is sensitive to this drug. In particular, Ras [6], EGFR T790M mutations [7] and cMET amplification [8] have been associated with primary and acquired resistance to erlotinib.

Enzastaurin is an oral acyclic bisindolylmaleimide, which inhibits Protein Kinase C β2, by ATP competition [9, 10]. The protein kinase C family of enzymes consists of 11 serine/threonine protein kinase isoforms which have a role in signaling cascades of several cellular functions, including cell growth, proliferation and apoptosis as well as cancer growth [11]. In NSCLC, increased phosphorylation and a differential expression of PKC isoforms has been described [12]. These increased levels of PKC have led to overexpression and increased secretion of vascular endothelial growth factor (VEGF) which is involved in neo-angiogenesis [13]. Originally, enzastaurin was evaluated in human tumor xenograft-bearing mice for its anti-angiogenic activity. Due to PKCβ inhibition, a reduction of plasma VEGF levels and a decrease in vessel density in the tumor was shown [14]. However, other molecular mechanisms are also involved in enzastaurin activity, such as the suppression of PI3K/AKT, Glycogen Synthase Kinase 3β (GSK3β) and ribosomal protein S6 [9].

Both erlotinib and enzastaurin can selectively act on aberrant cancer signaling. Because only

Figure 1. Postulated interaction between enzastaurin and erlotinib in the EGFR pathway. Upon stimulation several downstream pathways such as the PI3K/AKT and RAS pathway are activated. These pathways are involved in the regulation of cell survival, proliferation and apoptosis. The EGFR signaling pathway can be inhibited by erlotinib, which blocks EGFR autophosphorylation, a critical process for the kinase activation, leading to increased apoptosis and decreased cell proliferation.
The minority of NSCLC-patients presenting with an EGFR activating mutation is sensitive for erlotinib, combining it with enzastaurin could enhance its effect. Therefore, the aim of this study was to investigate whether the combination of erlotinib and enzastaurin could have a synergistic effect in NSCLC cells, and to evaluate the molecular mechanisms underlying the pharmacological interaction. For this purpose we used the NSCLC cells A549 and H1650 cell lines, which are characterized by a Kras mutation and an EGFR activating mutation, resulting in a reduced and increased sensitivity to erlotinib, respectively. The combination with enzastaurin could inhibit the involved pathways, increasing apoptosis and decreasing proliferation.

Material and methods

Drugs and chemicals

Erlotinib (N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine) was a gift from Roche Pharmaceuticals, while enzastaurin hydrchloride (1H-Pyrrole-2,5-dione,3-(1-methyl-1H-indol-3-yl)-4-[1-[1-(2-pyridinylmethyl)-4-piperidinyl]-1H-indol-3-yl) was a gift from Eli Lilly Corporation. The drugs were dissolved in DMSO and diluted in culture medium before use. RPMI medium, fetal bovine serum (FBS), penicillin (50 IU/ml) and streptomycin (50 μg/ml) were obtained from Gibco (Gaithersburg, MD). All other chemicals were obtained from Sigma (St. Louis, MO).

Cell lines

The human NSCLC cell lines A549 and H1650 were obtained from the American Type Culture Collection (ATCC) (Manassas, VA, USA) and cultured in RPMI (Flow Laboratories Irvine, Scotland) with 10% heat inactivated FBS and 1% penicillin and streptomycin (50 μg/ml) were obtained from Gibco (Gaithersburg, MD). All other chemicals were obtained from Sigma (St. Louis, MO).

Cytotoxicity assays

Growth inhibition was assayed as described earlier [15]. Shortly, 5000 cells/well were plated in a 96-wells plate and were allowed to adhere for 24 hrs. The cells were treated for 72 hrs with various concentrations (0.1-50 μM or 1-50 μM) of the studied drugs. After treatment, the medium was removed and replaced by 50 μL/well of (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) MTT solution (final concentration 0.42 mg/ml). The cells were incubated for 3 hours at 37°C. The formed formazan crystals were dissolved in 150 μL/well DMSO, while shaking for 10-20 minutes. The absorbance was measured at 540 nm using a spectrophotometric microplate reader (Tecan Spectrafluor, Salzburg, Austria). The growth inhibition was expressed as the percentage of control (vehicle treated). The 50% inhibitory concentration of cell growth (IC50) was estimated from the growth inhibition curves.

Drug combination studies

To evaluate the possible synergistic effect of both drugs, cells (5000 cells/well) were treated with a constant ratio calculated with respect to drug IC50 values. The cytotoxicity of the combination was compared with the cytotoxicity of each drug alone using the combination index (CI) as described by Chou and Talalay [16]. If the CI is lower than 0.8, the drugs work synergistically, 0.8<CI<1.2 means additive, and a CI>1.2 shows an antagonistic effect [17]. The mean CI was calculated from data points of FA>0.5, as values lower are not considered relevant for growth inhibition [18]. The data was processed using the CalcuSyn Software (Biosoft, Oxford, UK).

Cell cycle analysis

Flow cytometry was used to determine cell cycle distribution and cell death in the different cell lines treated with erlotinib, enzastaurin, combination or vehicle for 72 hrs. 500,000 cells were plated in a 6-wells plate (Greiner Bio-One GmbH, Frickenhausen, Germany), and treatment started 24 hrs after plating the cells. After 72 hrs floating and adherent cells were collected and transferred into round-bottom FALCON tubes (BD, Franklin Lakes, NJ, USA). After centrifugation the cell pellets were resolved in 1 ml hypotonic propidium iodide (PI) solution (50 mg/ml PI, 0.1% sodium citrate, 0.1% Triton X-100, 0.1 mg/ml ribonuclease A) and stored for 30 minutes on ice. Flow cytometry analyses were performed using FACScan.
The synergy of enzastaurin and erlotinib in NSCLC

ELISA assays

To study the activation of AKT and ERK1/2, 500,000 cells were exposed to IC₅₀ values of enzastaurin, erlotinib and enzastaurin-erlotinib combination for 72 hrs. Proteins were isolated and ELISA assays (Biosource International, Camarillo, CA, USA) for total AKT, phospho-AKT at serine residue 473 (AKT[pS473]), total ERK1/2 and dual-phosphorylated ERK1 at threonine 202 and tyrosine 204 (ERK1[pTpY-202/204]) and dual-phosphorylated ERK2 at threonine 185 and tyrosine 187 (ERK2[pTpY-185/187]) were used for the analysis of the activation of AKT and ERK1/2, respectively. Analysis was performed according to the manufacturer’s protocol. All results were normalized for protein content and the ratios of phosphorylation/total were calculated [19].

VEGF levels in the medium were determined with the R&D VEGF ELISA (R&D diagnostics, Minneapolis, USA), according to the manufacturers protocol. Of each sample, 200 µl of medium was taken, centrifuged for 20 min at 1000 g. A calibration line was included in each plate.

Real-time qRT-PCR

To study differential gene expression, cells were treated with enzastaurin, erlotinib and enzastaurin-erlotinib combination for 72 hrs. RNA extraction was performed using TRI REAGENT LS (Sigma-Aldrich, Zwijndrecht, the Netherlands) and reverse transcribed using the DyNAMO cDNA synthesis kit for qRT-PCR (Thermo Fisher Scientific, Landsmeer, the Netherlands).

Primers and probes for VEGF and VEGFR-2 (Hs00173626_m1 and Hs00176676_m1, respectively) and for EGFR were obtained from Applied Biosystems. Data were normalized to β-actin and target gene quantitation was performed using standard curves obtained with dilutions of cDNA from Quantitative-PCR Human Reference Total-RNA (Stratagene, La Jolla, CA, USA) [19].

Western blot

To evaluate the effect of the drugs on protein concentration we performed Western Blot analysis. Cells were treated for 72 hrs with vehicle or IC₅₀ values of enzastaurin and erlotinib (single or simultaneous combination). Cells were harvested and redissolved in lysis buffer (0.1% (v/v) Triton X-100, 10% glycerol, 150 mM NaCl, 10 mM Tris-HCL pH 7.6, 50 mM β-glycerophosphate, and 5 mM EDTA) and protein concentration was determined by the Biorad assay. Samples were denatured in sample buffer containing SDS and β-mercaptoethanol and equal amounts of protein were loaded and separated on 8-15% SDS-PAGE gels and transferred to Odyssey polyvinylidene fluoride membranes [20]. Next, the membranes were blocked with 5% nonfat dry milk/TBST and incubated overnight at 4°C with the primary antibodies diluted in 5% BSA/TBST. After washing, the membranes were incubated with secondary antibody (1:1 Li-Cor: PBS) in the dark for 1 hr and washed again. Detection was performed on the Odyssey machine using Li-Cor.

The following primary antibodies were used: GSK3β 1:1000, phospho-GSK3β (Ser9) 1:1000 (from Cell Signaling Technology); Cdc25C 1:1000, phospho-Cdc25C (Ser 216) 1:1000, CDK2 1:500, phospho-CDK2 (Thr160) 1:500, CHK2 1:1000, and, as a loading control, β-actin 1:10000 (Sigma Aldrich). The fluorescent secondary antibodies were goat anti-rabbit-IRDye800Cw (Westburg 926-32210D) and goat anti-mouse-IRDye680 (Westburg 926-32220D) 1:10000.

PAMgene array

A PAMchip array was used to analyse the effect of the drugs on tyrosine kinase activity.

Table 1. Sensitivity of A549 and H1650 NSCLC cells to erlotinib and enzastaurin and their combination

<table>
<thead>
<tr>
<th>Cell line</th>
<th>IC₅₀ (μM)</th>
<th>CI values</th>
</tr>
</thead>
<tbody>
<tr>
<td>A549</td>
<td>2.88 ± 0.35</td>
<td>8.83 ± 0.05</td>
</tr>
<tr>
<td>H1650</td>
<td>0.2 ± 0.05</td>
<td>18.83 ± 2.05</td>
</tr>
</tbody>
</table>

IC₅₀ concentrations of erlotinib and enzastaurin are depicted as means ± SEM (n=3). The combination index (CI) indicates the extent of synergism and was calculated from the average values at fraction affected 0.50 until 0.99 of each separate experiment as shown in Figure 2.

(BD Biosciences, Mount View, CA, USA), while data analysis was carried out with CELLQuest™ software, using gates on DNA histograms to estimate the amount of cells in G1, S, and G2/M phases, as well as the apoptotic cells in the sub-G1 region.

(BD Biosciences, Mount View, CA, USA), while data analysis was carried out with CELLQuest™ software, using gates on DNA histograms to estimate the amount of cells in G1, S, and G2/M phases, as well as the apoptotic cells in the sub-G1 region.
The synergy of enzastaurin and erlotinib in NSCLC

The Pamchip contains 136 phosphorylation sites of 144 peptides each consisting of 15 amino-acids. The 13 amino-carboxylic acids (R-COOH) of each peptide correspond to known or putative phosphorylation sites of tyrosine kinases. Experiments were performed and analyzed as described previously [21]. Briefly, A549 (10^7 cells/ml) cells were stimulated with epidermal growth factor (50 μg/ml) for 5 min and subsequently exposed for 2 hours to 4.6 μM erlotinib, 10 μM enzastaurin or their combination. Cells were harvested, snap-frozen and stored at -80°C until analysis. Cell pellets were lysed during 20 min at 4°C with Mammalian Protein Extraction Reagent (M-PER), phosphatase and protease inhibitors (Thermo Scientific, Rockford, IL, USA). Next, the lysates were centrifuged (15 min at 10000g). 40 μl of sample mix was subsequently prepared using reaction buffer 1x ABL buffer (Westburg), 100 μM ATP (Sigma-Aldrich), fluorescent labeled antibody PY20 (Exalpha, Maynard, MA), 5 μg of (lysate) protein and DMSO. The arrays were blocked using 2% BSA and the sample mix was loaded. After incubation at 30°C, analysis was started for 60 cycles using a Pamstation 96 instrument (Pamgene International). Repeated fluorescent imaging took place throughout the analysis with a 12-bit charge-coupled device (CCD) camera, thus real-time monitoring fluorescence. Spot intensity was corrected for local background and initial phosphorylation rates (V_{ini}) were calculated using Bionavigator software 5.1 (Pamgene International).

Results

Growth inhibition and pharmacological interaction studies

Previous experiments showed a dose dependent inhibition of cell growth with erlotinib in A549 and H1650 cells [19]. For the A549 cells a dose dependent inhibition of cell growth was also observed after enzastaurin treatment in A549 cells with a mean IC_{50} ± SEM value of 8.83 ± 0.05 SEM [10] (Table 1). A dose dependent inhibition of cell growth was observed in H1650 cells treated with enzastaurin, with a mean IC_{50} ± SEM of 18.83 ± 2.05 μM (Figure 2). When treating both cell lines with a constant ratio of both drugs simultaneously, a synergistic effect was obtained in both the A549 and H1650 cell lines, with a mean ± SEM CI of 0.58 ± 0.24 and 0.63 ± 0.03, respectively (Table 1).

Cell cycle modulation and induction of apoptosis

Flow cytometry with PI was performed to evaluate the effect on the cell cycle distribution and...
The synergy of enzastaurin and erlotinib in NSCLC

Figure 3. Effect of erlotinib (Er) and enzastaurin (En) on cell cycle distribution and cell cycle proteins. Cells were treated for 72 h at their IC\textsubscript{50} values or with 0.1% DMSO, A549: 2.88 \mu M Er and 8.83 \mu M En; H1650: 0.2 \mu M Er and 18.83 \mu M En. Values are means ± SEM. **: P<0.01; ***: P<0.001 as compared to control (A) Cell cycle distribution. (B) Percentage of cells in sub-G1 phase. (C) Western Blotting of phosphorylated cell cycle proteins cdc25C and CDK2.

to determine the extent of cell kill (Figure 3). In A549 cells erlotinib increased the G1 phase from 66.2% to 71.3%, while enzastaurin and the combination increased the S-phase from 9.8% to 11.9% and 10.8%, respectively. In H1650 cells the treatment with enzastaurin and the combination significantly increased the S phase from 4.9% to 21.3% and 21.0%, respectively, as well as the G2/M phase from 17.0% to 36.4% and 35.9%. In contrast, the G1 phase decreased from 78.0% to 42.3% and 43.1%. Erlotinib alone did not cause cell cycle arrest in H1650 cells. In A549 cells only a low increase in cell death was observed after treatment with enzastaurin or the combination from 3.4% to 6.9% and 4.7%, respectively. In H1650, however, enzastaurin and the combination induced a marked cell kill from 3.5% to 18.8% and 18.7%, respectively (Figure 3). In order to determine how the alteration in the cell cycle distribution was regulated we measured several cell cycle specific proteins. First, both expression and phosphorylation of cdc25c, a key regulator of the G2/M checkpoint, were determined. Enzastaurin alone was sufficient to downregulate both expression and phosphorylation of cdc25c, the same effect could be observed after combination treatment. CDK2 plays a role during the G1- and S-phases of the cell cycle. CDK2 had an overall lower expression in A549 cells as compared to H1650 cells, but in both cell lines enzastaurin caused a decrease in phosphorylation, which was even enhanced after combined treatment with erlotinib (Figure 3).

Modulation of AKT, ERK1/2 and GSK3β phosphorylation

EGFR signaling is mainly transduced through the AKT and ERK1/2 pathway. To investigate whether combining erlotinib with enzastaurin...
The synergy of enzastaurin and erlotinib in NSCLC

decreases this signaling, we evaluated the phosphorylation of these proteins. Whereas the total expression of both proteins stayed stable after the different treatments, we found a decreased ratio of p-AKT/total AKT in A549 cells. Enzastaurin or erlotinib in monotherapy decreased this ratio by 40%, while the combination of these drugs even showed a 60% decrease.

Figure 4. Inhibition of phosphorylation by enzastaurin, erlotinib and their combination as measured by ELISA (A-F) or Western Blot. Cells were treated during 72h at their IC_{50} values as specified in Figure 3. *: P<0.05, **: P<0.01. Modulation of total AKT (A), p-AKT (B), ratio of p-AKT/AKT (C), modulation of total ERK1/2 (D), p-ERK1/2 (E), ratio of p-ERK1/2 and ERK (F), and GSK3 β (G). Means ± SEM obtained from two independent experiments in triplicate (A-F) or representative blot out of 3 separate experiments (G).
The synergy of enzastaurin and erlotinib in NSCLC

Regarding the ratio of phospho-ERK/total ERK, a decrease of 20% after enzastaurin monotherapy was observed in H1650 cells, while erlotinib reduced this ratio with 30% and the combination of both drugs by 40%. Similarly, in A549 cells a reduction of 20, 15 and 30% was observed after enzastaurin, erlotinib and combination treatment respectively (Figure 4F).

Since enzastaurin affects several cellular signaling pathways, we also focused on GSK3β phosphorylation, which was studied by western blot analysis. These results showed that the phosphorylation of GSK3β is already strongly inhibited in both cell lines by treatment with enzastaurin alone. Similarly, the simultaneous combination of both drugs reduced GSK3β phosphorylation to undetectable levels (Figure 4G).

Modulation of VEGF and VEGFR-2 mRNA expression

Since enzastaurin is known for its anti-angiogenic effect and the PKC pathway is involved in angiogenesis we performed qRT-PCR to evaluate the modulation of the expression of VEGF and VEGFR-2.

A549 cells treated with enzastaurin or the combination of enzastaurin and erlotinib showed a 5.0 and 6.9 fold decrease in VEGF expression, respectively. On the other hand, erlotinib alone did not show a relevant decrease in VEGF expression. A 2.4 fold decrease was observed in H1650 cells treated with enzastaurin, while treatment with erlotinib and the combination of both drugs did not alter VEGF expression in H1650 cells (Figure 5A). Despite the strong decrease in VEGF expression, secretion of VEGF was hardly affected by the drugs; only in A549 cells enzastaurin reduced VEGF secretion by 15%, while the combination decreased...
The synergy of enzastaurin and erlotinib in NSCLC

Enzastaurin + Erlotinib

Enzastaurin

Erlotinib

secretion by 30%. Erlotinib treatment alone caused no changes in VEGF secretion (Figure 5A).

The expression of VEGFR-2 in A549 cells increased 1.7 and 3.0 fold after treatment with the combination or enzastaurin, respectively, whereas erlotinib did not alter its expression. In H1650 cells VEGFR-2 expression dropped after treatment with enzastaurin, erlotinib and the combination in comparison to the control (Figure 6A). There was no significant difference in VEGFR-2 expression between cells treated with erlotinib, enzastaurin or their combination.

The EGFR levels of the control in H1650 cells are 7-fold higher when compared to the A549. Nevertheless, in both cell lines erlotinib, enzastaurin and the combination all decreased EGFR expression, with a much more pronounced decrease in the H1650 cells. The lowest levels of EGFR were obtained after treatment with the combination of both drugs (Figure 6B).

Modulation of protein tyrosine kinase activity by enzastaurin and erlotinib

The Pamgene array consists of 144 peptides representing known and assumed phos-
The synergy of enzastaurin and erlotinib in NSCLC

phorylation sites. With this assay, the activity and inhibition of the tyrosine kinases in exposed cells can be determined in real-time (Figure 7). From these peptides, signal intensity of 50 sites was considered to be too low to evaluate. Enzastaurin or erlotinib monotherapy led to a reduction of 11 and 15% in EGFR phosphorylation speed, respectively, whereas the combination led to a 55% reduction. On the remaining peptides, erlotinib caused an overall decrease in tyrosine kinase activity of 20%. A strong decrease in MK14 (MAPK14) and RBL2 (retinoblastoma-like 2) phosphorylation was observed, whereas these effects were abrogated after combining erlotinib with enzastaurin. Erlotinib monotherapy only caused a 20% decrease of EGFR phosphorylation. Enzastaurin treatment resulted in an overall reduction of phosphorylation speed of 20%, whereas combination of erlotinib and enzastaurin, led to an overall decrease of 60%, with a total abrogation of EPHA1 phosphorylation. Furthermore, the enzastaurin induced decrease in phosphorylation of MK14 and RBL2 was abrogated after combination therapy. In contrast, the phosphorylation of SRC8 (CTTN, Cortactin) and PLCG1 was increased in comparison with that of other peptides, whereas this was not the case after treatment with erlotinib or enzastaurin alone.

Discussion

In the present study, we demonstrated a synergistic interaction of the PKCβ inhibitor enzastaurin and the EGFR inhibitor erlotinib in A549 and H1650 NSCLC cell lines. It has been shown that sensitizing mutations in EGFR are good biomarkers for erlotinib efficiency [4]. For enzastaurin, no clear biomarkers have been found, although evidence suggests that proteins related with the JAK/STAT pathway might serve as predictors for activity [22]. Here we investigated whether the combination of these two drugs is synergistic in a cell line with sensitizing EGFR mutations (H1650), as well as a cell line without EGFR mutations (A549).

Several studies have shown the importance of modulating the cell cycle in the effect of drug combinations [23]. Drugs acting at different stages of the cell cycle might potentiate each other’s effect. Previous studies showed that PKC can mediate cell cycle transitions [24]. In the A549 cells the effects on cell cycle arrest were minimal, but in the H1650 an increased portion of the cells were in the S- or G2/M-phase after treatment with enzastaurin alone or in combination. Erlotinib by itself did not result in cell cycle arrest in both cells.

CDK2 plays an active role in the transition between the S- and G2-phase, controlled by phosphorylation at Thr160 [25]. Western Blotting revealed that phosphorylation at the CDK2-Thr160 site was strongly decreased after the combination therapy and to a lesser extent after enzastaurin treatment. This decrease might cause the S-phase arrest.

Cdc25C is inactive when phosphorylated at its Ser216 residue and plays a role in the G2/M transition of the cell cycle [26]. It has been shown that cdc25C promotes the M-phase transition by phosphorylating and activating cdc2 [27]. Previous studies have shown that PKC induces the phosphorylation of cdc25C, thus promoting the G2 to M transition. When inhibiting PKC with either antibodies or antisense DNA, a G2/M phase arrest has been demonstrated [28]. Our results indeed show a strong decrease in both total cdc25C levels, and in cdc25C-Ser216 phosphorylation, after treatment with either enzastaurin or in the combination, thus explaining the G2/M-phase arrest.

In the present study, no induction of apoptosis was observed, in contrast to studies combining either erlotinib or enzastaurin with pemetrexed [10, 19]. Since both erlotinib and enzastaurin are not known as cytotoxic and cytostatic drugs, this might explain the lack of apoptosis induction as compared to the combinations with the antimetabolite pemetrexed. Hence combination of enzastaurin and erlotinib can increase arrest in several cell cycle checkpoints, without inducing apoptosis.

Regarding the downstream effectors of PKCβ- and EGFR-signaling, a decrease in the phosphorylation of AKT, ERK1 and GSK3β was observed. Since AKT is a downstream effector of both PKCβ and EGFR [29, 30], levels of phospho-AKT were decreased after all treatments in both cell lines. In A549 cells the decrease of phospho-AKT/total AKT ratio was most pronounced. The other downstream target of both PKCβ and EGFR signaling [31, 32], ERK1/2 showed a decrease in phosphorylation at all
The synergy of enzastaurin and erlotinib in NSCLC

treatment conditions. Moreover, the ratio phospho-ERK1/2 over total ERK1/2 was decreased in both cell lines after drug treatment. Since GSK3β is an effector of PKCβ [33] but not of EGFR, a decrease in phosphorylation was only observed after treatment with enzastaurin or the combination, reported earlier for enzastaurin in different cell lines [9, 10, 34, 35] inducing a decrease in p-AKT for 24 h [10]. These results suggest that they may be used as pharmacodynamic markers of enzastaurin activity.

Although enzastaurin has a direct effect on several human cancer cells [10], it was originally developed as anti-angiogenic compound. Enzastaurin decreased intratumoral vessel density and VEGF expression in several human xenografts and NSCLC cell lines [10, 14], and A549 cells in the present study. However, the drug combination had no effect on VEGF expression in H1650 cells, suggesting that several mechanisms might be involved in VEGF expression regulation. Although in vitro experiments showed a reduction of VEGF in the medium [10], in a clinical study enzastaurin increased VEGF plasma levels which were further increased by the combination of enzastaurin-pemetrexed [36, 37]. However, another clinical trial in advanced NSCLC patients treated with enzastaurin did not show a consistent change in VEGF plasma levels, but could associate low baseline VEGF levels with longer progression free survival [36]. Further research is warranted to clarify these results.

Finally, we also studied the VEGFR-2 expression, which was increased after treatment with enzastaurin in both cell lines. This might be explained by the reduction of VEGF expression, inducing a feedback mechanism on VEGFR-2 expression in the cells. In case of a highly activated VEGFR-2 it would be useful to use a combination with a drug active against VEGFR-2 (i.e sorafenib). Therefore, these data showed promising results, which need further investigation, possibly also in combination with other targeted compounds.

When comparing the kinase activity data of the Pamgene analysis, several trends can be seen. Phosphorylation of EGFR at Tyr1110 is linked to its activation [38]. Tyr1110 phosphorylation is affected by erlotinib treatment, and has been correlated with EGFR mutations [38]. GSK3β is a downstream target of both enzastaurin [9] and erlotinib [39] through AKT. Active GSK3β induces degradation of cyclin-D1, thus inhibiting cell cycle G1 transition. In turn, GSK3β is inhibited by AKT under normal conditions through phosphorylation at the regulatory Ser9 position. A reduction in phosphorylation speed was also observed at the active site Tyr216 residue both after enzastaurin (19%) and erlotinib treatment (16%). The combination of both inhibitors even led to a 57% reduction of phosphorylation. GSK3β plays a role in the Wnt-pathway were it phosphorylates β-catenin, thus targeting it for degradation [40]. By phosphorylating β-catenin, this downstream target of Wnt will not translocate to the nucleus to exert its activator transcription function [41]. When GSK3β is phosphorylated at Tyr216, it is ubiquitinated by β-TrCP and marked for degradation, thus promoting β-catenin stability and Wnt-signaling. So, when Tyr216-phosphorylation of GSK3β is reduced, this might also lower signaling through the oncogenic Wnt-pathway [40].

EphA1 (Ephrin Receptor A1) is a member of the Eph superfamily. These receptors mainly play roles in cell-cell interactions and migration, with ligand and receptor sitting on the opposite cell membranes of contacting cells. Several Ephrin A ligands can activate bidirectional signaling, with forward signaling downstream of the receptor and reversed signaling downstream of the ligand [42]. These receptors and ligands have been associated with both tumor growth and suppression [43-47]. Which factors influence the outcome has not yet been elucidated. Moreover, several processes seem to be independent of kinase activity of the receptors [48]. We saw a strong downregulation of phosphorylation at the Y781 site of the EphA1 receptor after treatment with enzastaurin or erlotinib and even a total abrogation of phosphorylation after treatment with the combination. A possible explanation is that a downregulation of integrin adhesion is caused in a kinase-dependent manner [49].

MK14 encodes for p38 MAPK [50]. This protein is activated when it is dually phosphorylated at Thr180 Tyr182 and is located at a crossroad of several signaling pathways e.g. JNK and Rho. Activation of p38 MAPK strongly declines after erlotinib treatment, with the effect being lower after enzastaurin or combination treatment. p38 MAPK is a downstream target of PKCβ. In
hepatocellular carcinoma, p38 MAPK phosphorylation has been correlated with metastatic potential of the cells. Enzastaurin inhibits PKCβ-activation and decreases p38 MAPK phosphorylation, thus affecting the invasive and migratory potential of the cells [51]. Phosphorylated p38 MAPK has also been shown to play a role in the EGFR signaling pathway. In particular it degrades MDM2, thus preventing p53 degradation. Next p53 translocates to the nucleus and regulates the transcription of EGFR [52]. When erlotinib blocks EGFR signaling, the phosphorylation speed of p38 MAPK strongly decreases. It has been shown that EGFR-TKIs suppress the internalization of EGFR [53]. This might result in a feedback to p38 MAPK, decreasing its phosphorylation and activity.

Our extensive in vitro studies are essential for the judicious selection of the best combination and models to be tested in future in vivo tumor models, as well as to evaluate the role of potential biomarkers which can predict drug activity. Earlier in vivo studies in the development of enzastaurin showed effects on angiogenesis, such as VEGF levels [9, 54], which were also found in clinical studies [37]. Furthermore, in both cultured tumor cells and in xenograft tumor tissues from the same cell lines, enzastaurin inhibited the phosphorylation pGSK3β [9, 54], and a more potent inhibition on protein expression was observed when it was combined with another EGFR-TKI, gefitinib [54]. Several other in vivo studies showed that both enzastaurin and erlotinib affected the Akt pathway [9, 10, 19]. Therefore, future in vivo studies on the combination of erlotinib and enzastaurin should investigate both the overall antitumor effect, and whether the mechanism will include effects on signaling and angiogenesis.

In conclusion enzastaurin is a PKCβ inhibitor, acting on several cellular signaling pathways that are involved in proliferation, apoptosis and angiogenesis. These features make it a good compound to combine with other compounds in combination therapy. Although it is no longer in clinical development for NSCLC, research into enzastaurin and related compounds is still ongoing in other cancer types (eg glioblastoma [55] and colorectal cancer [56]) and non-cancer related illnesses (cardiovascular conditions, diabetes, bipolar disorder and transplantation) [57].

Acknowledgements

NVS is funded by the Institute for Innovation, Science and Technology Flanders (IWT); grant number 121114. Funded by grants from Cancer Center Amsterdam (CCA) Foundation (to EG and GJP), Associazione Italiana per la Ricerca sul Cancro (AIRC), and Regione Toscana Bando FAS Salute (to EG). This study was also supported by Eli Lilly & Co, Houten, the Netherlands (to GJP).

Disclosure of conflict of interest

None.

Address correspondence to: Godefridus J Peters, Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands. Tel: +31-20-4442633; Fax: +31-20-4443844; E-mail: gj.peters@vumc.nl

References

The synergy of enzastaurin and erlotinib in NSCLC

[52] Park SH, Seong MA, Lee HY. p38 MAPK-induced MDM2 degradation confers paclitaxel resistance through p53-mediated regulation of...
The synergy of enzastaurin and erlotinib in NSCLC

