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suppression. One such study reported that 
while Dkk3 could interact with Krm1/2, it 
could not interact with, or affect, the expres-
sion of LRP6 [57]. Dkk3 downregulation has 
been detected in melanoma [58]; basal 
breast cancer [59]; gastric cancer [60, 61]; 
clear cell renal cell carcinoma [62]; and pan-
creatic cancer [63], while its overexpression 
has been reported in hepatoblastoma [64] 
and esophageal adenocarcinoma [65] (Fig- 
ure 4). 

The Dkk4 binds LRP5/LRP6 and Krm1/2 
and demonstrates a Wnt/β-catenin antago-
nistic activity similar that of Dkk1. Thus, the 
downregulation of Dkk4 can promote tumor 
progression. However, its upregulation may 
also contribute to tumor progression. Pan et 
al. [66] observed that Dkk4 expression was 
high in pancreatic cancer tissues, and was 
associated with tumor and organ develop-
ment, and with inflammation. Immunohisto- 
chemical and immunofluorescence studies 
indicated that Dkk4 was co-expressed with 
the mitogen-activated protein kinase 3 
(MAPK3) and guanine nucleotide exchange 
factor (VAV3) in pancreatic cancer tissues, 
suggesting that in pancreatic cancer, Dkk4 
may function through other signaling path-
ways such as the MAPK pathway. Hu et al. 
[67] reported that the Dkk4 mRNA and pro-
tein expression levels were significantly 
upregulated in clear cell renal cell carcinoma 
along with the downregulation of cyclin D1, 
c-myc, and β-catenin. Additionally, Hinoda et 
al. [52] reported that Dkk4 expression was 
increased in renal cancer tissues wherein it 
could activate the non-canonical c-Jun N- 
terminal kinase (JNK) signaling pathway 
while inhibiting the canonical Wnt pathway. 
Dkk4 expression was reportedly also upreg-
ulated in colorectal tumors and could pro-
mote tumor progression [55, 68]. Contrary 
to these reports, however, a short hairpin 
(shRNA)-mediated knockdown of Dkk4 was 
noted to promote cell proliferation in hepato-
cellular carcinoma [69] (Figure 5).

Role of Dkks in the biological phenotype of 
cancer cells

Dkks and cancer cell proliferation

In normal tissue, cellular proliferation is 
strictly controlled to maintain homeostasis. 
Tumor cells, however, amass the ability to Figure 4. Expression profile for Dkk3 in human cancers.



DKKs and cancer

1759	 Am J Cancer Res 2017;7(9):1754-1768

propagate indefinitely. Cellular proliferation 
is controlled through the regulation of cell 
cycle, growth factors, and their receptors, 
and oncogenes/tumor suppressor genes 
[70]. Dkk1 could inhibit the proliferation of 
MCF-7 breast cancer cell line, whereas LM- 
MCF-7 cells, where Dkk1 expression was 
knocked down via siRNAs, exhibited incre- 
ased proliferation. The high Dkk1 level can 
downregulate the expression of β-catenin, 
c-Myc, cyclin D1, and Survivin by accelerat-
ing their phosphorylation-dependent degra-
dation, thereby blocking the heightened pro-
liferation of breast cancer cells [71]. Con- 
versely, Dkk1 can promote cancer cell prolif-
eration independent of the Wnt signaling 
pathway [14]. Cytoskeleton-associated pro-
tein 4 (CKAP4) is a receptor for Dkk1, and 
the expression of Dkk1 and CKAP4 are fre-
quently dysregulated in human pancreatic 
and lung cancer lesions. Binding of Dkk1 to 
CKAP4 activates the PI3K/AKT pathway, 
resulting in cellular proliferation [72]. 

The Dkk2 expression is significantly upregu-
lated in prostate cancer, and its knockdown 
can suppress cell proliferation and invasion. 
Downregulation of Dkk2 can decrease the 
expression of β-catenin, cyclin D1, and c- 
Myc in prostate cancer cells through Wnt 
signaling inhibition [53]. An in silico study 
has shown that Dkk3 could efficiently inter-
act with LRP, Krm, and epidermal growth 
factor receptor (EGFR) with comparable 
binding energies. Dkk3 can inhibit cancer 
cell growth by blocking Wnt and EGFR down-
stream signaling [56]. Dkk4 is frequently 
downregulated in colorectal cancer cell lines 
and primary tumors, and the ectopic overex-
pression of Dkk4 or treatment with recombi-
nant Dkk4 could both inhibit the growth of 
colorectal cancer cells. Cell cycle regulation, 
specifically a G0/G1 arrest, may partially 
explain this inhibitory effect of Dkk4 on 
tumor proliferation [73].

Dkks and cancer cell apoptosis

Controlled cellular proliferation and apopto-
sis ensure normal growth and development 
of the body and normal physiological func-
tions. Apoptosis is regulated by a balance of 
anti-apoptotic and pro-apoptotic factors, 
and tumor cells have gained the ability to 
avoid apoptosis [70].Figure 5. Expression profile for Dkk4 in human cancers.
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The role of Dkks in apoptosis is well described 
in renal cell carcinoma (RCC). The expression of 
Dkk1 is significantly lower in the RCC tissue 
compared with the adjacent normal tissue. 
However, Dkk1 overexpression in cells could 
induce apoptosis and inhibit proliferation. In- 
terestingly, while T-cell factor/lymphoid enhan- 
cer factor (TCF/LEF) activity; the expression of 
nuclear β-catenin; cyclin D1; and c-Myc rema- 
ined unchanged in Dkk1 transfectants, the 
expression levels of cleaved caspase 3; p53; 
p21; and p53 upregulated modulator of apop-
tosis (puma) were significantly upregulated. 
These results indicate that the pro-apoptotic 
effect of Dkk1 is independent of Wnt signaling 
[74]. 

Like Dkk1, the expression level of Dkk2 is de- 
creased in RCC cell lines. However, unlike Dkk1, 
the downregulation of Dkk2 in RCC cell line 
A498 could inhibit RCC progression by inducing 
apoptosis and G1 phase cell cycle arrest [52]. 
The expression of Dkk-3 is downregulated by 
histone modification. RCC proliferation was sig-
nificantly inhibited, and apoptosis promoted, in 
Dkk3-overexpressing RCC cell lines. Further, 
the expression levels of p21, MDM-2, and Puma 
genes were increased in the Dkk3-overexpre- 
ssing cells. Thus, Dkk3 upregulation in renal 
cancer cells can induce apoptosis via the non-
canonical JNK pathway [75]. Besides RCC, 
Dkk3 exhibits tumor-suppressive and pro-apop-
totic effects, inducing apoptosis through mito-
chondrial and Fas death receptor pathways 
[76]. Pro-apoptotic effect of Dkk1 has also 
been reported in lung cancer; however, the 
mechanism remains unclear. Dkk3 gene knock-
out in the non-small cell lung cancer cell line 
H460 increased the expressions of cyclin-
dependent kinases D1 and E, p53, p21, and 
Bax, thereby activating the apoptotic pathway 
[77]. In contrast, Dkk3 overexpression in lung 
cancer cell line resulted in significant upregula-
tion of E-cadherin, while the expression levels 
of matrix metalloproteinase-7 (MMP7), survivin, 
c-myc, and cyclin D1 were downregulated. In 
cisplatin-resistant lung adenocarcinoma cell 
lines, Dkk3 overexpression induced cell cycle 
arrest and apoptosis [78]. Lastly, Terauchi et al. 
[79] have reported that the downregulation of 
Dkk4 expression could suppress apoptosis in 
osteoblasts via the Wnt signaling pathway.

Dkks and cancer angiogenesis

Angiogenesis is critical to provide the body with 
sufficient nutrients and oxygen and to elimin- 

ate metabolic wastes. Angiogenesis is strictly 
and precisely regulated to maintain homeosta-
sis. Tumor angiogenesis or neovascularization, 
however, is a result of a loss of angiogenic con-
trol. Tumor angiogenesis is essential for inva-
sive growth and metastasis and consists of two 
patterns: general angiogenesis and vasculo-
genic mimicry [70, 80]. Emerging reports indi-
cate that the Wnt signaling pathways and their 
antagonists modulate vessel neogenesis dur-
ing both developmental and pathological angio-
genesis [29]. 

Dkk2 can promote angiogenesis in murine and 
human endothelial cells, and the Dkk2-media- 
ted angiogenesis is distinct from VEGF-media- 
ted angiogenesis [81]. Compared to VEGF-
induced blood vessels, Dkk2-induced vessel 
displays closer interconnections. Additionally, 
Dkk2-induced vessels consistently show higher 
coverage of endothelial cells (ECs) by pericytes 
and smooth muscle cells (SMCs), which in turn 
plays an important role in vessel maturity and 
stability. Dkk2-mediated angiogenesis involves 
a signaling cascade induced through LRP6-
mediated APC/Asef2/Cdc42 activation. 

Dkk1 reportedly suppresses angiogenesis, and 
its expression is downregulated upon induction 
of morphogenesis [81, 82]. In non-small cell 
lung cancer, Dkk1 promotes vasculogenic mim-
icry by inducing the expression of epithelial-
mesenchymal transition (EMT)-related and 
cancer stem cell (CSC)-related proteins [83]. 

Dkks and cancer invasion & metastasis

Invasion and metastasis are the most promi-
nent biological characteristics of cancer and 
are also the most important causes of cancer-
related deaths. Tumor metastasis is a continu-
ous and dynamic process, wherein tumor cells 
translocate from their primary position via local 
invasion, blood vessels, and lymphatic tracts.

Recent studies have identified a role of Dkk1 in 
tumorigenesis and the invasiveness of several 
tumors. Dkk1 is upregulated in human HCCA 
tissues and increases tumor cell invasion and 
metastasis. The high Dkk1 level in HCCA corre-
lates with metastasis to the hilar lymph nodes. 
Downregulation of Dkk1 in HCCA cells, howev-
er, significantly inhibits proliferation, colony for-
mation, and migration. Dkk1 exerts its pro-
invasive effect, at least in part, through the β-cat- 
enin/MMP-7 signaling pathway [33]. Similarly, 
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β-catenin/MMP-7 signaling, a pathway inde-
pendent of the canonical Wnt signaling path-
way, is one of the pathways responsible for the 
pro-invasive effect of Dkk1 in hepatocellular 
carcinoma [84]. 

Expression of Dkk1 is elevated in an intrahe-
patic cholangiocarcinoma (ICC) cell line and 
promotes migration and invasion via elevated 
MMP-9 and VEGF-C [34]. Conversely, Dkk1 
overexpression inhibits the proliferation and 
migration of human retinal pigment epithelial 
cells by suppressing the Wnt/β-catenin signal-
ing pathway [85]. The expression of Dkk1 is 
markedly decreased in gastric cancer (GC) tis-
sue and serum samples, and an upregulation 
of Dkk1 in chemo-resistant GC cells inhibits 
their proliferation and invasion [86].

Interestingly, there are several hormone res- 
ponse elements in the Dkks genes, which allow 
these hormones to regulate important physio-
logical processes by modulating the expression 
of Dkks genes. Thyroid hormone receptor (TR) 
binds to nucleotides -1645 to -1629 of the 
Dkk4 gene promoter and induces its expres-
sion in HepG2-TR cells at the transcriptional 
level. Dkk4 overexpression suppresses hepa-
toma cell invasion in vitro and reduces metas-
tasis in SCID mice via decreased MMP-2 expre- 
ssion [87]. The 1,25(OH)2D3 induces an early 
and transient binding of the vitamin D receptor 
(VDR) and the Silencing mediator for retinoic 
acid and thyroid hormone receptor (SMRT) co-
repressor to a region adjacent to the transcrip-
tion start site of Dkk4. Ectopic Dkk4 expression 
increases the migration and invasion of colon 
cancer cells, which can be reversed by 1α,25-
dihydroxyvitamin D3 [88].

Dkks and cancer diagnosis

Even as a growing body of literature confirms 
the essentiality of early diagnosis in improved 
patient prognosis, there is a dearth of early 
diagnostic markers for a vast number of can-
cers. In a previous study, Dkks were reported to 
be a highly sensitive and specific early detec-
tion markers for hepatocellular carcinoma 
(HCC) [89]. The role of Dkk1 in the diagnosis of 
HCC is relatively clear. In a large multicenter 
study conducted by Fan et al. [90], Dkk1 exhib-
ited multiple advantages in the diagnosis of 
HCC: (1) Serum Dkk1 levels were significantly 
higher in HCC patients compared to unaffected 

controls; (2) Dkk1 level retained diagnostic 
accuracy in AFP-negative HCC patients, as well 
in patients with early-stage HCC; (3) Elevated 
serum Dkk1 concentration could differentiate 
between HCC, chronic HBV infection, and cir-
rhosis; and (4) A combination of Dkk1 and AFP 
level measurement greatly improved HCC diag-
nostic accuracy than when either test was used 
separately. Dkk1 can thus serve as a potential 
biomarker for HCC diagnosis, and subsequent 
studies have further confirmed the usefulness 
of a combined Dkk1-AFP measurement in im- 
proving early diagnostic efficacy [2]. 

In cervical cancer patients, serum levels of 
Dkk1 were associated with the histological 
type and lymphatic metastasis [45]. Serum lev-
els of Dkk1 were also significantly higher in gas-
tric adenocarcinoma patients. More important-
ly, a Dkk1 cutoff level of 25 U/mL could discrim-
inate between gastric cancer patients and 
unaffected controls with 100% specificity and 
sensitivity. Thus, serum Dkk1 level may serve 
as a potent, novel serological marker for gastric 
cancers [91]. Similar to Dkk1, the serum level 
of Dkk3 was also significantly associated with 
lymphatic metastasis and tumor diameter in 
cervical cancer patients [92]. We also found 
that the serum Dkk3 level was significantly 
higher in healthy individuals than the gastric 
carcinoma patients and inversely linked to 
tumor size [61]. 

Dkks and the treatment of cancer

In assimilating the various roles played by the 
Dkks family in tumor development and metas-
tasis, Dkks emerge as potential therapeutic 
targets for cancer treatment. In this regard, 
researchers have extensively studied Dkk3 as 
a genetic therapeutic target, and have demon-
strated its tumor-suppressive effects. In one 
such study, Shiraha et al. [63], using intra-
tumoral injections of an adenovirus vector car-
rying the human Dkk3 gene (Ad-REIC), showed 
that Dkk3 expression could be a potential ther-
apeutic tool for pancreatic cancer. They further 
reported that Ad-REIC could induce apoptosis 
and inhibit the growth of pancreatic cancer cell 
lines, which were the underlying mechanisms 
for Dkk3-mediated tumor suppression. In ano- 
ther study, Kurozumi et al. [93] reported that in 
malignant glioma, Dkk3 expression could regu-
late cell growth through caspase-dependent 
apoptosis. Dkk3 expression was also reported 
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to induce apoptosis in human prostate cancer 
cells through the activation of c-Jun-NH2-kinase 
[94].

Dkks and cancer molecular mechanism

With the rapid development of modern molecu-
lar biology, genetic and epigenetic alterations 
have been identified as key players in cancer 
initiation and progression. In the Dkks gene 
family, methylation is the most commonly iden-
tified epigenetic hallmark associated with 
tumorigenesis. 

Dkks methylation in cancer

DNA methylation is a crucial epigenetic modifi-
cation with key functions during development. 
Moreover, aberrant DNA methylation has been 
linked to many human diseases, particularly 
cancer. Sites of differential and aberrant DNA 
methylation include regulatory DNA sequences, 
such as CpG islands in promoters; and distal 
cis-regulatory elements, such as enhancers 
and promoters [95]. Recent studies have sho- 

wn that Dkks gene methylation is involved in 
tumorigenesis and cancer progression. Further- 
more, the Dkks family members exhibit differ-
ent methylation status in different cancer types 
[96].

Dkks related miRNAs in cancer

MicroRNAs (miRNAs) are a subset of highly con-
served, small noncoding RNAs that are approxi-
mately 18-22 nucleotides in length. miRNAs 
bind to the 3’-untranslated regions of mRNAs 
and bring about their degradation or transla-
tional repression, thereby acting as vital post-
transcriptional regulators of gene expression 
[97]. miRNAs play important regulatory roles in 
many biological processes, including cellular 
differentiation, proliferation, and apoptosis of 
cancer cells [98]. Dysregulated miRNAs expres-
sion has been reported is a large number of 
human cancers.

Ren et al. [98] noted that miR-501-5p was 
markedly upregulated in gastric cancer cell 
lines and affected tissues and that its expres-

Figure 6. Schematic representation of the antitumor mechanisms of Dkks in cancer cell.
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sion level was significantly correlated with a 
more aggressive phenotype in gastric cancer 
patients. They further demonstrated that miR-
501-5p could directly target and suppress mul-
tiple repressors of the Wnt/β-catenin signaling 
cascade, including Dkk1. Yu et al. [99] demon-
strated that miR-522 overexpression could pro-
mote cell proliferation, colony formation, and 
cell cycle progression, whereas a knockdown of 
miR-522 could attenuate these effects. 

Dkks gene polymorphisms

In a recent study, Singh et al. [100] showed that 
Dkk3 rs7396187 exhibited a protective effect 
on lung cancer patients. Subjects with a hetero-
zygous genotype of Dkk2 rs17037102 and 
rs419558 were at an increased risk. Subjects 
with the variant genotypic combination of Dkk3 
rs3206824 and Dkk2 rs419558 showed a 
two-fold higher risk of developing lung cancer. 
Additionally, subjects with all three Dkk2 geno-
typic variants had a four-fold higher risk of 
developing lung cancer.

Other mechanisms

In addition to the regulatory mechanisms not- 
ed above, other mechanisms have been noted 
through which Dkks expression levels are mod-
ulated in certain cancer subtypes. In HBV-
expressing liver cancer cell lines, HBV could 
bind to the Dkk1 promoter region and trigger its 
increasing expression at mRNA and protein 
level [101]. 1,25(OH)2D3 promotes the up-
expression of Dkk1 mRNA and protein through 
an indirect transcriptional mechanism, which 
act as a tumor suppressor in colon cancer. In 
contrast, 1,25(OH)2D3 blocks Dkk4 transcrip-
tion by targeting its promoter via VDR binding 
[102]. Additionally, thyroid hormone (T3) can 
induce Dkk4 mRNA and protein expression in 
HCC cells.

Perspective

The Dkk proteins have lately attracted a wide 
range of attention in cancer research as both a 
diagnostic biomarker and a potential therapeu-
tic target. A large number of studies report the 
pleiotropic roles of Dkk proteins in physiologi-
cal processes, while Dkks dysfunctions have 
been implicated in many diseases. In this re- 
view, we summarized the different functional 
pathways of Dkks gene family, in addition to the 

canonical and widely-studied Wnt pathway 
(Figure 6). Of note, even as the underlying 
mechanisms remain unclear, the growing body 
of literature provides irrefutable evidence of 
the important role played by Dkks in the diag-
nosis and treatment of tumors.  
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