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Figure 3. Western blot analysis of platelet poor plasma Atrogin-1 and MuRF1 in experimental cohort 2. (A) Changes 
in muscle groups (gastrocnemius (GSN), tibialis anterior, quadriceps, heart, and fat) 14 days after C26 tumor im-
plantation (top left). The average tumor load of the tumor treated mice was approximately 0.5 g (top right). (B) 
Immunoblot analysis of platelet poor plasma samples (1:400 dilution) C26 tumor bearing (cachectic) (N=6) and 
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parallel controls. Lastly, identification of the 
ubiquitously expressed carboxy terminus of 
HSP-70 interacting protein (CHIP), encoded by 
the Stub1 gene, was found to be present  
in human serum (Supplemental Figure 2C).  
A complete chemistry profile of the pooled 
serum analyzed is found in Supplemental  
Table 1.

Discussion

The ubiquitin ligases Atrogin-1 and MuRF1 are 
found specifically in striated muscle [9] and 
were first recognized for their mechanistic roles 
in skeletal muscle atrophy in 2001 [9]. The 
presence of circulating Atrogin-1 and MuRF1 in 
“healthy” blood has not previously been report-
ed, although they have been identified by ELISA 
to acute increase after myocardial infarction 
[14]. In these elegant studies, Atrogin-1 and 
MuRF1, along with 4 other cardiac and muscle-
enriched ubiquitin ligases (Rnf207, MuRF3, 
Kbtbd10/KLHL41, Asb11, and Asb2) were 
investigated in acute myocardial infarction 
patients (AMI) [14]. Of these, Atrogin-1, MuRF1, 
Rnf207, Kbtbd10/KLHL41 were significantly 
increased compared to control animals after 
experimental acute myocardial infarction in 
rats [14]. In human acute myocardial infarction 
patients, Atrogin-1 and MuRF1 were found to 
increase by 1 hour, peak at 3 hours, and 
decrease at 6-24 hours, paralleling circulating 
levels these investigators identified in experi-
mental rat surgically given an AMI [14]. Among 
the six E3s studied, the receiver operator curve 
(ROS) of the Ring Finger Protein 207 (RNF207) 
most closely compared to Troponin I sensitivity 
and specificity [14]. These studies were im- 
portant for their identification of circulating 
Atrogin-1 and MuRF1 prior to AMI since they 
had not previously been identified. Notably, the 
investigators used ELISAs to identify the levels 
of circulating E3s, so any changes in molecular 
size (e.g., post-translational modifications) were 
not identifiable by ELISA, as they were in the 

present study. Other components of the ubiqui-
tin proteasome system have been found circu-
lating, which are distinct from the 20S protea-
somes found in circulating blood cells [23], 
making it possible that circulating ubiquitin 
ligases have previously unidentified functions 
in their circulating forms.

The present study identified quantitative 
changes in the mouse of circulating immunore-
active Atrogin-1 and MuRF1 in the the C26 car-
cinoma tumor-bearing mouse model of cancer 
cachexia at 14 + days post-implantation [15, 
17, 18, 24]. The study confirmed previously 
findings that Atrogin-1 and MuRF1 circulates in 
the healthy state [14], presumably from the 
routine turnover of muscle, as seen with circu-
lating creatine kinase isoforms [25, 26]. 
However, the reason for the increased levels of 
proteins in not clear, but presumed to be sec-
ondary to inflammatory-mediated damage to 
muscle. In cancer cachexia patients, elevated 
LDH levels from myocyte damage has been 
reported [27]. Therefore, increased quantities 
of circulating Atrogin-1 and MuRF1 may be due 
to myocyte damage and release. What is most 
intriguing about the findings in the present 
study are the qualitative changes in immunore-
active Atrogin-1 and MuRF1. Specifically, the 
high molecular weight species circulating with 
cachexia are reminiscent of the mono-ubiquiti-
nation both Atrogin-1 (Figure 2A, blue arrow), 
poly-ubiquitination of Atrogin-1 (Figures 2A, 3B, 
blue lines). MuRF1 is well known to both  
mono- [28, 29] and poly-ubiquitinate different 
substrates [30]. Additionally, in cell culture, 
increased MuRF1 expression significantly 
enhanced autoubiquitination [29, 30], which 
has not been reported in vivo previously. Since 
MuRF1 forms dimers with itself [31]. it is pos-
sible that this autoubiquitination may be either 
a feedback loop or may allow communications 
between striated muscle and other organ com-
partments. The potential for other post-transla-
tional modifications beyond ubiquitin certainly 

control mice (N=3), along with a mouse heart lysate positive control. (C) Densitometric analysis of (B). (D) Immu-
noblot analysis of platelet poor plasma (1:25 dilution) from C26 tumor bearing (cachectic) (N=5) and control mice 
(N=5) and were ran with mouse heart lysate control. (E) Densitometric analysis of (D). The region of interest in each 
lane of (B and D) was performed using the rectangular image tool, with plots constructed representing peak inten-
sity in each lane, as previously described [20]. Blue arrow/blue bar: postulated post-translational modifications of 
Atrogin-1 (B) or MuRF1 (D). Black arrow: expected molecular weight band for Atrogin-1 (B) or MuRF1 (D). Red arrow/
red bar: indicates the postulated degradation products of Atrogin-1 (B) or MuRF1 (D). Densitometric analysis was 
performed on each lane and included the multiple molecular weight species (indicated by the blue, black, and red 
arrows). The densitometric values of each of these species were then added together (grouped) and statistically 
analyzed to compare the cachexia vs control groups. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.



Circulating muscle E3s in cancer cachexia

1955 Am J Cancer Res 2017;7(9):1948-1958

exists, and may give further insight into  
the pathophysiology of diseases, in future 
studies. 

Not only was the identification of increased  
circulating Atrogin-1 and MuRF1 seen in can- 
cer cachexia in the present study, we identi- 
fied post-translationally modified Atrogin-1 and 
MuRF1. One potential mechanism of this may 
be auto-ubiquitination, which has been shown 
in vitro when MuRF1 expression is increased in 
vitro [32, 33]. Post-translational alterations in 
proteins are important biomarkers of disease 
in use today, including the diagnosis of diabe-
tes control and rheumatoid arthritis [34-36]. In 
diabetes, elevated levels of glucose induces 
the non-enzymatic glycation of proteins, where-
by glucose reacts with amine groups to form a 
stable ketoamine Amadori Product (advanced 
glycation endproducts or AGEs) [37]. Of the gly-
cated species, hemoglobin was identified for its 
diagnostic utility due to the stability of the 
amine group added [38]. Elevated levels of 
higher molecular weight hemoglobin (A1C or 
glycated Hemoglobin) indicate poor long-term 
glucose control that cannot be detected other-
wise. Similarly, identification of proteins and pe- 
ptides post-translationally modified with citrul-
line (citrullinated) are found in rheumatoid 
arthritis. Citrullinated proteins were identified 
as autoantigens [39]. Diagnostically, they have 
been found to have the highest specificity and 
sensitivity in diagnosing RA, with high positive 
predictive value in joint destruction [40]. Post-
translational modifications of such markers 
have helped both in understanding the underly-
ing pathophysiology of disease and provide a 
useful window for disease detection and treat-
ment [41]. The role of the higher molecular 
weight Atrogin-1 and MuRF1 may have both 
roles in the pathophysiology of the systemic 
cachexia disease processes and/or may have 
diagnostic utility in future studies as diagnostic 
tests of early cachexia are generally lacking.

Current diagnostic criteria for cachexia are 
largely present much later in the pathophysiol-
ogy of disease, and include the presence of 
non-edematous weight loss >5% in <12 months 
in the presence of cancer, in addition to 3 of the 
following criteria: decreased muscle strength, 
fatigue, anorexia, low FFM indices, or abnormal 
biochemistry (increased CRP, anemia, or decr- 
eased albumin) [1]. There is little to no specific-
ity of these biochemical markers, which may or 
may not be present with cachexia [1], illustrat-

ing the need for better specific markers. Since 
early detection and disease-specific staging 
determine the outcomes of the cachectic-state 
[42], better markers of disease are needed. 
The current use of biomarkers of anemia, 
inflammation, and low albumin have been pro-
posed as markers, but do not generally identify 
cachexia until later in the pathophysiology of 
the disease, when physical symptoms can be 
obvious [7]. The occurrence/recurrence detec-
tion window is often overlooked but in patients 
undergoing cancer treatment, the earlier the 
detection, the more likely the possibility of 
impacting their prognosis [1, 43, 44].

We studied two cohorts in the present study, 
which included two different strain mouse 
strains, in addition to two methodologies of 
capturing the western blots. In cohort 1, mice 
were injected with 0.5 × 106 C26 adenocarci-
noma cells, while cohort 2 mice were injected 
with 1.0 × 106 C26 adenocarcinoma cells. The 
two doses correspond to the rapidness of the 
cachexia, with both cohort 1 and cohort 2 los-
ing ~10% weight loss, but on days 17 and 14, 
respectively. The differences in response may 
also be related to strain differences (BALB/c in 
cohort 1, CD2F1 in cohort 2) in addition to the 
differences in the doses given. The identifica-
tion of MuRF1 in mouse serum on Day 17 in 
cohort 1 was performed with serum diluted 
1:400 and the western ECL detected using 
x-ray film and up to overnight exposure (Figure 
2). In contrast, MuRF1 was detected in plasma 
only when diluted less than 1:400 (1:25 dilu-
tion) to detect western ECL using a camera-
based system (Figure 3). These differences  
are likely due to the length of exposure allowed 
in the camera vs. the x-ray film systems, or dif-
ferences in interferences in plasma vs. serum 
when detecting circulating ubiquitin ligases in 
experimental models of cancer cachexia.

This is the first time the muscle-specific atro-
gin-1 and MuRF1 ubiquitin ligases (E3) have 
been resolved on gel electrophoresis (Supple- 
mental Figures 2, 3A, 3B), illustrating the diver-
sity of molecular species (i.e., molecular weight 
forms) present. In addition to Atrogin-1 and 
MuRF1, other ubiquitously expressed E3 pro-
teins critical in protein quality control such as 
the protein CHIP are also circulating in normal 
serum (Supplemental Figure 3C), which has not 
been previously described to our knowledge. 
Given CHIP’s role in diseases such as cerebel-
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lar ataxia [45], cystic fibrosis [46-48], and car-
diac disease [49], its use diagnostically as bio-
markers may be warranted as it is for the 
Atrogin-1 and MuRF1 in cancer cachexia identi-
fied here.  

Future studies applying these findings in human 
disease should keep in mind the time-depen-
dent manner by which increased MuRF1 and 
Atrogin-1 species are found circulating in mice 
after the deliberate placement of tumor in the 
present study and objective measures of cac- 
hexia are present, including significant reduc-
tions in fat and lean body (muscle) mass by MRI 
body composition analysis [1, 15, 17, 18, 43]. 
The experimental design here did seek to iden-
tify the earliest time points that increases in 
MuRF1 and Atrogin-1 are detectable, which 
would be a critical point in investigating these 
markers in patients with suspected or estab-
lished cachexia. This is a particularly challeng-
ing issue in studying human cachexia as de- 
tection of cachexia by MRI is not routinely per-
formed and pragmatically is diagnosed at later 
time points where weight loss is visually detect-
able. The type of cancer and progression is also 
an important variable that will need to be taken 
into account when correlating these biomark-
ers with the progression and timing of disease 
occurrence/recurrence.
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Supplemental Figure 1. Weight changes in control and tumor implanted mice at harvest. A. Weight change as a 
percent in individual mice as a percentage of their own baseline weights at day 17 in cohort 1. B. Weight change in 
individual mice in grams compared to their own baseline weights at day 14 in cohort 2. Cohort 1: N=3 vehicle con-
trol treated mice; N=6 C26 tumor treated mice. Cohort 2: N=5 vehicle control treated mice; N=5 C26 tumor treated 
mice. A two-tailed Student’s t-test was performed to determine significance. *p<0.05.

Supplemental Figure 2. Immunoblot analysis of control human plasma samples. Identification of (A). Atrogin-1 or 
(B). MuRF1 in human plasma. Black arrow: Indicates molecular weight of expected protein. N=4 biological repli-
cates.

Supplemental Figure 3. Immunoblot analysis of pooled human control serum for (A) Atrogin-1, (B) MuRF1, or (C) 
CHIP (Stub1). Black arrow: Indicates molecular weight of expected protein. Parallel clinical chemistry of the pooled 
samples can be found in Supplemental Table 1.
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Supplemental Table 1. Basic clinical chemistry profile of the human pool-21 used in the present study 
(Supplemental Figure 3, immunoblot studies on serum dilutions). UNC Hospitals Core (Chemistry) 
Laboratory anonymous serum pool

Chemistry Analyte POOL-21 
Value Reference Range Analyzer Used

Albumin 3.26 3.5-5.0 g/dL Advia (FSN-1)
Alkaline phosphatase* 146.5 38-126 U/L Advia (FSN-1)
Alanine Aminotransferase (ALT)* 59.1 Male: 19-72 U/L; Female: 15-48 U/L Advia (FSN-1)
Amylase 56 30-100 Advia (FSN-1)
Aspartate Aminotransferase (AST)* 77.9 Male: 19-55; Female: 14-38 Advia (FSN-1)
Bilirubin (Conjugated) 0 ≤0.1 mg/dL Advia (FSN-1)
Bilirubin (Unconjugated) 0.47 ≤1.2 mg/dL Advia (FSN-1)
Blood urea nitrogen (BUN) 19.7 7-21 mg/dL Advia (FSN-1)
C3 (Complement C3) 140.81 88-171 mg/dL Advia (FSN-1)
C4 (Complement C4) 29.86 15-48 mg/dL Advia (FSN-1)
Calcium (Ca2+) 8.85 8.5-10.2 mg/dL Advia (FSN-1)
Cholesterol 150.3 <200 mg/dL Advia (FSN-1)
Creatine Kinase* 228.7 145 U/L Advia (FSN-1)
Chloride 106.4 98-107 mmol/L Advia (FSN-1)
Bicarbonate (CO2) 22.2 22-30 mmol/L Advia (FSN-1)
Creatine 1.39 Male: 0.8-1.4; Female: 0.7-1.1 Advia (FSN-1)
C-Reactive Protein (hs)* 4.5 1.0-3.0 mg/L Advia (FSN-1)
Serum Ferritin (Iron)* 67.3 35-165 ug/dL Advia (FSN-1)
Glucose (Non-fasting) 118.2 65-179 mg/dL Advia (FSN-1)
HDL Cholesterol 44 40-59 mg/dL Advia (FSN-1)
Total IgA 254.81 40-400 mg/dL Advia (FSN-1)
Total IgG 1086.9 600-1700 mg/dL Advia (FSN-1)
Total IgM 96.76 35-290 mg/dL Advia (FSN-1)
Potassium (K+) 4.23 3.5-5.0 mmol/L Advia (FSN-1)
Lactate Dehydrogenase* 670.4 338-610 U/L Advia (FSN-1)
Lipase 182 44-232 U/L Advia (FSN-1)
Magnesium (Mg2+) 1.89 1.6-2.2 mg/dL Advia (FSN-1)
Sodium (Na+) 138.8 135-145 mmol/dL Advia (FSN-1)
Rheumatoid Factor 10.2 0.0-15.0 U/ml Advia (FSN-1)
Total Bilirubin 0.77 ≤1.2 mg/dL Advia (FSN-1)
Total Protein** 6.23 6.6-8.0 g/dL Advia (FSN-1)
Triglyceride* 150.1 <150 mg/dL Advia (FSN-1)
Transthyretin (TTR) 21.67 17-34 mg/dL Advia (FSN-1)
Uric acid 5.1 Male: 4.0-9.0; Female: 3.0-6.5 Advia (FSN-1)
Thyroxine (Total T4) 7.31 5.5-11.0 ug/dL VitrosECiQ (Eci#1, #3)
Free T4 (FT4)* 1.42 0.71-1.4 ng/dL VitrosECiQ (Eci#1, #3)
Triiodothyonine (T3) 1.11 1.0-1.7 ng/mL VitrosECiQ (Eci#1, #3)
Follicle Stimulating Hormone (FSH) 13.4 Male: 1.6-9.7 mIU/mL

Female: Follicular phase: 1.9-11.6 mIU/mL
Luteal phase: 1.4-9.6 mIU/mL
Post Menopausal: 21.5-131.0 mIU/mL

VitrosECiQ (Eci#1, #3)

Leuteinizing Hormone (LH) 6.54 Male: 3.0-10.0 mIU/mL
Female: Follicular phase: 2.6-12.1 mIU/mL
Luteal phase: 0.8-15.5 mIU/mL
Post Menopausal: 13.1-86.5 mIU/mL

VitrosECiQ (Eci#1, #3)

Prolactin 23.6 5-19 ng/mL VitrosECiQ (Eci#1, #3)
Ferritin* 629 Male: 27-377 ng/mL; Female: 3-151 VitrosECiQ (Eci#1, #3)
Folate 14.4 >2.7 ng/mL VitrosECiQ (Eci#1, #3)
Prostate Specific Antigen (PSA) 1.76 <4 ng/mL VitrosECiQ (Eci#1, #3)
CA-125 59.9 0.0-34.9 U/mL VitrosECiQ (Eci#1, #3)
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Carcinoembryonic Antigen (CEA)* 4.23 0-3.0 ng/mL VitrosECiQ (Eci#1, #3)
Estradiol (E2) 349.4 Male: 5-66pg/mL

Female (Postmenopausal): 5-38 pg/mL
Female (Ovulating): Follicular phase 27-161pg/mL
Periovulatory: 187-382 pg/mL
Luteal phase: 33-201 pg/mL

VitrosECiQ (Eci#1, #3)

Progesterone 2.68 Male: <1.00 ng/mL
Female: Follicular phase: <1.70 ng/mL
Luteal phase: 1.00-22.40 ng/mL
Post Menopausal: <1.00 ng/mL

VitrosECiQ (Eci#1, #3)

Cortisol 19.1 Before 10:00am: 4.5-22.7 µg/dL
After 5:00pm: 1.7-14.1 µg/dL
Critical: <1.5 µg/dL

VitrosECiQ (Eci#1, #3)

Testosterone 74 Male >20 yrs of age: 179-756 ng/dL
Female with normal menstrual cycle: 6-77 ng/dL

VitrosECiQ (Eci#1, #3)

Parathyroid Hormone 53.78 12-72 pg/mL Roche Elecsys (Elecsys #1)
CK-MB 4.82 0-6.0 ng/mL Roche Elecsys (Elecsys #1)
Troponin T* 0.056 0.000-0.029 Roche Elecsys (Elecsys #1)
NT-proBNP* 3123 Male: 0-177; Female: 0-226 Roche Elecsys (Elecsys #1)
βHCG* 734.7 Non-pregnant: <5 mIU/mL (U/L) Roche Elecsys (Elecsys #1)

Serum hCG increases with age in non-pregnant 
women. A cutoff of 14.0 IU/L should be used 
when interpreting hCG results in women >55 yrs. 
Pregnancy is unlikely in perimenopausal women 
41-55 yrs with an hCG between 5.0 and 14.0 IU/L 
if serum FSH is >20.0IU/L. Clin Chem 2005; 51: 
1830-5
WksPreg Mean Range n
4 1110 40-4480 42
5 8050 270-28700 52
6 29700 3700-84900 67
7 58800 9700-120000 62
8 79500 31000-184000 37

9 91500 61200-152000 25
10 71000 22000-143000 12
14 33100 14300-75800 219
15 27500 12300-60300 355
16 21900 8800-54500 163
17 18000 8100-51300 68
18 18400 3900-49400 30
19 20900 3600-56600 14

*Above reference range; **Below reference range. Analysis for * and ** did not include gender-specific cut-off ranges not applicable to pooled 
serum.


