Erratum


Kazuki Otsuka1*, Manabu Sasada1,3,4, Takuya Iyoda5, Yusuke Nohara1, Shunsuke Sakai1, Tatsufumi Asayama1, Yusuke Suenaga4, Sana Yokoi4, Yoshikazu Higami2,3, Hiroaki Kodama6, Fumio Fukai1,3

Departments of 1Molecular Patho-Physiology, 2Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan; 3Translational Research Center, Research Institutes for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan; 4Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan; 5Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan; 6Department of Biochemistry, Faculty of Science and Engineering, Saga University, Saga, Japan. *Equal contributors.

Received December 8, 2019; Accepted December 11, 2019; Epub January 1, 2020; Published January 15, 2020

In this article published in AJCR0090684, a mistake has been found that Figure 6 was wrong: The MG-132 concentration should be 1 μM in Lane 5 and Lane 7 in Figure 6B on page 441. So, we would like to publish this Erratum to reflect this change. The authors express regrets for this mistake.

Address correspondence to: Dr. Fumio Fukai, Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan. Tel: 81-4-7124-1501 Ext. 4645; Fax: 81-4-7121-3608; E-mail: fukai@rs.noda.tus.ac.jp
New strategy for differentiation therapy based on N-Myc degradation

Figure 6. Decrease in N-myc protein level induced by the combination of ATRA with TNIIIA2 is caused by proteasomal degradation.