Original Article

USP7 stabilizes EZH2 and enhances cancer malignant progression

Nana Zheng1,3*, Man Chu1*, Min Lin1, Youhua He2, Zhiwei Wang1,3

Departments of 1Obstetrics and Gynecology, 2Urology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China; 3Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. *Equal contributors.

Received November 24, 2019; Accepted December 22, 2019; Epub January 1, 2020; Published January 15, 2020

Abstract: EZH2, a histone methylase, plays a critical role in the tumor progression via regulation of progenitor genes. However, the detailed molecular mechanism of EZH2 in cancer malignant progression remains unknown. Therefore, we aimed to investigate how EZH2 is regulated in human cancer. We used numerous approaches, including Co-immunoprecipitation (Co-IP), Transfection, RT-PCR, Western blotting, Transwell assays, and animal studies, to determine the deubiquitination mechanism of EZH2 in cancer cells. We demonstrated that USP7 regulated EZH2 in human cancer cells and in vivo in mouse models. Overexpression of USP7 promoted the expression of EZH2 protein, but overexpression of a USP7 mutant did not change the EZH2 level. Consistently, knockdown of USP7 resulted in a striking decrease in EZH2 protein levels in human cancer cells. Functionally, USP7 overexpression promoted cell growth and invasion via deubiquitination of EZH2. Consistently, downregulation of USP7 inhibited cell migration and invasion in cancer. More importantly, knockdown of USP7 inhibited tumor growth, while USP7 overexpression exhibited opposed effect in mice. Our results indicate that USP7 regulates EZH2 via its deubiquitination and stabilization. The USP7/EZH2 axis could present a new promising therapeutic target for cancer patients.

Keywords: USP7, EZH2, cancer, metastasis, invasion

Introduction

In the United States, prostate cancer is the most commonly diagnosed cancer in males, and it is the secondary highest cause of mortality worldwide, despite of the progressive decline in incidence and death rates [1]. Like many other cancers, prostate cancer progresses from a nonaggressive and slow-growing stage to an aggressive and fast-growing stage that requires treatment [2]. The prostate-specific antigen (PSA) level has been widely used for the early detection of prostate cancer, sometimes in combination with a digital rectal examination or other ancillary tests [3]. However, these detections cannot discriminate between nonaggressive tumors and aggressive tumors, and the molecular mechanism of prostate tumorigenesis remains unknown. Therefore, it is important to elucidate the mechanism of prostate carcinogenesis.

The ubiquitin-proteasome system (UPS) controls the degradation of targeted proteins and plays critical roles in cell proliferation, apoptosis, migration, invasion and the cell cycle [4, 5]. It has been reported that the UPS governs approximately 80% to 90% of the protein degradations that occurs in cells [6]. The degradation of proteins requires two processes: conjugation of ubiquitin to the targeted substrates and degradation of the ubiquitinated proteins [7]. Three types of enzymes, E1, E2, and E3, catalyze the degradation process. Specifically, the E1 enzyme activates ubiquitin molecules and transfers them to the E2 enzyme, and subsequently the activated ubiquitin molecules are recruited to the E3 ligases. The E3 complex binds to substrate proteins, and the ubiquitinated substrates are further degraded by 26S proteasomes [7]. Ubiquitination mediates targeted protein degradation, while deubiquitylases (DUBs, also called deubiquitinases) can remove ubiquitin from labeled proteins or from polyubiquitin chains and maintain targeted protein stability [6]. Therefore, DUBs can reverse the function of E3 ligases and contribute to the turnover of substrate proteins, thus exhibiting a
significant effect on cellular processes. In turn, irregular DUB expression has a close relationship with migration, invasion and carcinogenesis.

The human genome encodes at least 98 DUBs and they are categorized into 6 subfamilies: USPs (ubiquitin-specific proteases), UCHs (ubiquitin carboxyl-terminal hydrolases), OTUs (ovarian-tumor proteases), MJDs (Machado-Joseph disease protein domain proteases), JAMMs (JAMM/MPN domain-associated metallopeptidases) and MCPIPs (monocyte chemotactic protein-induced proteases) [8-10]. Among all the DUB subfamilies, the USP family is the largest with approximately 60 members. Among the USP members, USP7 is the most well characterized [11]. USP7, ubiquitin specific protease 7 (also known as HAUSP), can reverse ubiquitination and spare substrate proteins from degradation [12]. For example, USP7 has been shown to deubiquitinate MDM2, which functions as an ubiquitin ligase (E3) that directly mediates the ubiquitination and subsequent degradation of p53. However, depletion of USP7 promotes the degradation of MDM2, and subsequently stabilizes p53, thus inhibiting the cell cycle and promoting apoptosis [13-15].

Enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of PRC2 (Polycomb repressive complex 2), which silences gene expression via methylation of lysine 27 of histone H3 [16, 17]. It has been reported that EZH2 downregulates tumor suppressors, such as ADRB2 and DAB2IP, and subsequently leads to malignant progression of CRPC (castration-resistant prostate cancer) [18, 19]. Additionally, EZH2 also affects oncogenes, including Ras, NF-κB and AR, in metastatic prostate cancer [16, 17, 20]. Posttranslational modifications of EZH2 such as ubiquitination, SUMOylation, phosphorylation and glycosylation, also influence its stability and oncogenic activity. The ubiquitination of EZH2 has an effect on the activity of PRC2 in cancers [21]. Studies have shown that β-TrCP, Praja1 and Smurf2 function as ubiquitin E3 ligases for EZH2 in lymphoma, breast cancer and neuron differentiation, respectively [22-25]. However, the molecular mechanism of EZH2 in prostate cancer is still elusive.

In this study, we investigated the relationship between USP7 and EZH2. We found that USP7 stabilized EZH2 via deubiquitination in human prostate cancer cells. Overexpression of USP7 enhanced the stability of EZH2, while deletion of USP7 decreased the EZH2 protein level and thus suppressed prostate tumorigenesis. Our work suggested that USP7 is a novel regulator of EZH2, and that targeting the USP7/EZH2 pathway could be a promising therapeutic approach for patients with prostate cancer.

Methods and materials

Cell culture and reagents

Human DU145, PC3, 293T, HeLa and T98G cells were cultured in DMEM with 10% fetal bovine serum and 1% penicillin and streptomycin in a 5% CO₂ atmosphere at 37°C. LNCaP cells were cultured in RPMI1640 supplemented with 10% fetal bovine serum and 1% penicillin and streptomycin at 37°C in 5% CO₂. The primary antibody for EZH2 (ab228697) was purchased from Abcam Company (Cambridge, MA, USA). USP7 antibody was purchased from Santa Cruz Company (Santa Cruz, CA, USA). Anti-Flag and anti-Myc antibodies were obtained from Sigma-Aldrich (St. Louis, MO, USA). All secondary antibodies were obtained from Thermo Scientific. Lipofectamine 2000 was purchased from Invitrogen. Monoclonal antitubulin was obtained from Sigma-Aldrich. CTG (Cell Titer-Glo) Luminescent was purchased from Promega (Madison, WI, USA). Matrigel and Transwell inserts were purchased from BD Biosciences. ShRNA vectors to deplete endogenous EZH2 were purchased from GenePharma (Shanghai, China).

Transfection

Cells were cultured in 6-well plates overnight and transfected with Myc-EZH2 cDNA, Flag-EZH2 cDNA or shRNA, Flag-USP7 cDNA or shRNA, and a combination or empty vector using Lipofectamine 2000 following the manufacturer's protocol. USP7-C223S was transfected into the cells using Lipofectamine 2000. After 4-6 h, the medium was replaced with fresh DMEM. The cells were harvested at 48 h for further analysis, which are described in the results sections.

Immunoprecipitation

293T, T98G, PC3 and DU145 cells were transfected with Flag-USP7, Flag-EZH2, or pcDNA3.0
USP7 stabilizes EZH2 level

as an empty vector. Then, the harvested cells were lysed for 30 min in protein lysis buffer (Sigma-Aldrich) on ice. After centrifugation, the protein concentration was detected by a BCA Protein Assay kit (Thermo Scientific, MA). The immunoprecipitation of FLAG-tagged proteins was performed by using a FLAG (M2) affinity gel incubated overnight. After precipitation, the beads were washed three times with protein lysis buffer and then combined with 30 μl of 2× loading buffer (1:1). The samples were boiled for 5 min at 95°C and loaded onto the SDS-PAGE gels [21].

In vivo deubiquitination assay

HeLa or 293T cells were transfected with or without HA-tagged ubiquitin, Myc-EZH2 and desired constructs. After 36 h of transfection, cells were treated with 20 μM MG132 for 10 h. Cells were lysed in lysis buffer containing 150 mM NaCl, 20 mM Tris-HCl (pH 7.4), 1% Nonidet P-40, 0.5 mM EDTA, PMSF (50 μg/ml), N-ethylmaleimide (10 mM) and protease inhibitors. After centrifugation, the anti-Myc antibody and protein A/G plus agarose beads were added to the supernatants, and the mixture was incubated at 4°C for 16 h. The beads were washed with lysis buffer 6 times and combined with 2× loading buffer. Boiled beads were used for standard immunoblotting.

Cell viability assay

Exponentially growing cells were seeded in 96-well plates (3×10³ cells/well) overnight. Then the cells were transfected with Flag-USP7 or USP7-shRNA, and the medium was replaced with fresh medium after 6 h. After 48 h, 20 μl CTG solution was added to each well and cell viability was measured by a microplate reader. Each value was normalized to that of cells transfected with empty vector.

Cell apoptosis analysis

PC3 cells were cultured in 6-well plates overnight. The cells were transfected with EZH2-shRNA, Flag-USP7 or both. The empty vector was transfected as a control group. After 48 h, cells were collected and washed with PBS, and the cells were resuspended in 500 μl of binding buffer with 5 μl of propidium iodide (PI) and 5 μl of FITC-conjugated anti-Annexin V antibody. Subsequently, apoptosis was detected by a FACSCalibur flow cytometer (BD, USA).

Cell invasion assay

To determine the invasive ability of prostate cancer cells, Transwell assays were performed using PC3 and DU145 cells. Cells transfected with USP7 cDNA, USP7-shRNA, EZH2 shRNA or a combination of USP7 cDNA and EZH2 shRNA were cultured in 200 μl serum-free medium in the Matrigel-coated upper chamber. Complete medium with 10% FBS was added to the lower chamber. Cells were incubated for 20 h at 37°C with 5% CO₂, and the cells that had adhered to the bottom chamber were stained with Giemsa and were taken pictures.

Cell scratch assay

PC3 and DU145 cells were seeded in 6-well plates and transfected with desired plasmids. After the cells were almost 100% confluent, then the cells were scratched with a sterile 20 μl pipette tip. The cells were washed with PBS and fresh medium was added. The scratch was imaged with a microscope at 0 h and 20 h.

Quantitative real-time reverse transcription-PCR analysis

Total RNA was extracted with Trizol (Invitrogen, Carlsbad, CA) and reversed-transcribed into cDNA via a RevertAid First Strand cDNA Synthesis Kit. PCR was performed using Power SYBR Green PCR Master Mix and the results were calculated by the 2⁻ΔΔCt method. The primers used in the PCR are as follows: EZH2, forward primer (5'-GTGGAGAGATTATTTCTCAAGATG-3') and reverse primer (5'-CCGACATACTCAGGCGATCAGGCG-3'); GAPDH, forward primer (5'-ACCCAGAAGACTGTGGATGG-3') and reverse primer (5'-CAGTGAGCTTCCCGTTCAG-3').

Western blotting analysis

Cells were collected, washed with PBS and lysed by protein lysis buffer on ice. After centrifugation, the protein concentration was detected by a BCA Protein Assay kit (Thermo Scientific, Waltham, MA, USA). Equal amounts of protein were loaded into sodium dodecyl sulfate (SDS) polyacrylamide gel, separated by electrophoresis, and then transferred onto a polyvinylidene fluoride (PVDF) membrane. The membranes were then incubated with primary antibody at 4°C overnight. The membrane was washed three times with TBST and incubated with a second antibody for 1 h at room temper-
nature. Then, the expression of protein was detected by electro-chemiluminescence (ECL) assay.

Mouse xenograft assay

6 × 10^6 PC3 cells with USP7 overexpression or USP7 knockdown and control cells were suspended in 100 μl of DMEM mixed with Matrigel and injected into the flanks of male nude mice. Tumor size and weight were determined every 2 d, and the tumor volume was measured according to the formula: \(L \times W^2 \times 0.52 \), where the \(L \) represents the longest diameter and the \(W \) is the shortest diameter. At the end of the study, the mice were killed and the tumors were resected. Tumor volume and weight were measured as mentioned above.

Immunohistochemistry

Prostate cancer tumor samples or xenograft tumors were deparaffinized, dehydrated and incubated in heat-mediated antigen retrieval solution. Subsequently, the slides were cooled to RT and incubated with 3% \(\text{H}_2\text{O}_2 \) for 10 min to block endogenous peroxidase activity. After washing, the slides were incubated in normal bovine serum (Biosharp) to block nonspecific binding of IgG. Then, the slides were treated with primary antibody USP7 and EZH2 at 4°C overnight. Slides were washed and incubated with streptavidin-conjugated horseradish peroxidase in PBS for 1 h at RT. After washing with PBS 3 times, the slides were treated with DAB for 5 min. Images were acquired by an Olympus camera and matched software. IHC straining was scored by two independent pathologists on the basis of the “most common” criteria.

Statistical analysis

All statistical analyses were conducted using GraphPad Prism 5.0 (Graph Pad Software, La Jolla, CA). Student’s t-test and ANOVA were performed to evaluate statistical significance. The results are presented as the means ± SD. \(P<0.05 \) was considered statistically significant.

Results

The histone methylase EZH2 physically associates with the deubiquitinase USP7

To explore the association between EZH2 and USP7, Flag-USP7 and Myc-EZH2 were both transfected into PC3, DU145 and T98G cells. The external expression of Myc-EZH2 was higher than that in the control group due to the transfection of USP7 (Figure 1A). The expression of EZH2 was increased in a dose-dependent manner according to USP7 levels (Figure 1B). To explore the potential of USP7 to modulate the stability of EZH2, the cycloheximide (CHX) chase assay was performed to detect the half-life of EZH2. In this experiment, PC3 and HeLa cells were transfected with USP7 cDNA and incubated with CHX. The cells were collected at different time points. The Western blotting results indicated that overexpression of USP7 extended the half-life of EZH2 (Figure 1C). USP7/C223S is a catalytically inactive mutant of USP7. When the wild-type and mutant USP7 were transfected into DU145, HeLa and T98G cells, expression of EZH2 was higher in cells transfected with the wild-type USP7 transfection than in cells transfected with USP7/C223S or control group (Figure 1D). The protein level of EZH2 was decreased when cells were transfected with EZH2-shRNA, while the level of EZH2 was rescued when USP7 cDNA was transfected (Figure 1E).

To further determine the physical interaction between EZH2 and USP7, co-immunoprecipitation (Co-IP) experiments were performed. The Flag-USP7 or Flag-EZH2 was transfected into DU145 and 293T cells. After 48 h, the cells were harvested and lysed on ice. The Flag-M2 beads were added to the supernatant overnight. The samples were detected by Western blotting assay and IB with antibody against USP7 revealed that USP7 was co-immunoprecipitated with EZH2 (Figure 1F, 1G). Similarly, IB with the EZH2 antibody result suggests that EZH2 co-immunoprecipitated with USP7 (Figure 1F, 1G).

USP7 promotes the stabilization of EZH2

To determine the function of the interaction between USP7 and EZH2, we detected the effect of USP7 deletion on the EZH2 level. Two different sets of USP7 shRNA were transfected into multiple cells, and the IB result showed that the EZH2 protein level was reduced as a consequence of the USP7 deletion (Figure 2A, 2B). In addition, the decrease in EZH2 levels caused by USP7 knockdown occurred only at the protein level and was not a result of reduced mRNA levels (Supplementary Figure 1). RT-PCR demonstrated that USP7 deletion did not lead
USP7 stabilizes EZH2 level

Figure 1. The deubiquitinase USP7 physically associates with the histone methylase EZH2. (A) PC3, DU145 and T98G cells were transfected with Myc-EZH2 and Flag-USP7. Cellular extracts were collected for Western blotting. (B) PC3, DU145 and 293T cells were transfected with Myc-EZH2 and different doses of Flag-USP7. Cellular extracts were collected for Western blotting. (C) Left panel, PC3 and HeLa cells transfected with empty vector and USP7 cDNA constructor were treated with cycloheximide (CHX; 50 mg/ml), harvested at specific time points, and then analyzed by Western blotting. Right panel, Quantitative results are illustrated for the left panel. (D) DU145, HeLa and T98G cells were transfected with USP7-WT, USP7-C223S and empty vector, harvested and analyzed by Western blotting. (E) 293T, T98G and PC3 cells were transfected with EZH2-shRNA or a combination of EZH2-shRNA and USP7-cDNA or an empty vector. Then, Western blotting analysis was performed. (F) Flag-EZH2 or Flag-USP7 was transfected into 293T cells, and cellular extracts were immunoprecipitated with anti-FLAG followed by IB. (G) Experiments analogous to those in part (F) were performed in DU145 cells transfected with Flag-EZH2 or Flag-USP7.

Supplementary Figure 1. This figure shows the changes in EZH2 mRNA levels in multiple cells. Furthermore, the USP7-dependent degradation of EZH2 was efficiently blocked by the proteasome inhibitor, MG132, suggesting that USP7 regulated EZH2 protein levels through the ubiquitin proteasome pathway (Figure 2C). These results indicated that USP7 governs the stability of EZH2 and the EZH2 is a substrate of USP7. To further define the effect of USP7 deletion on the EZH2 level, CHX assays were performed. The 293T and T98G cells were transfected with control shRNA and USP7-shRNA, and then incubated with CHX. The cells were harvested at different
USP7 stabilizes EZH2 level

USP7 deubiquitinates EZH2

Next, we detected whether the EZH2 stability promoted by USP7 was a result of EZH2 deubiquitination mediated by USP7. 293T and HeLa cells were cotransfected with Myc-EZH2, HA-ub and Flag-USP7. The results of IP with Myc beads followed by IB with anti-HA antibody showed that overexpression of USP7 mediated the decreased ubiquitination of EZH2 in 293T cells (Figure 3A). The similar results were observed in HeLa cells (Figure 3B). Moreover, 293T cells were transfected with Myc-EZH2, HA-ub and USP7-shRNA. IP of the cellular
time points and Western blotting result showed that the half-life of EZH2 was markedly reduced due to the knockdown of USP7 (Figure 2D). Taken together, these data demonstrated that USP7 regulated the stability of EZH2.

Figure 2. USP7 promotes the stabilization of EZH2. (A) 293T, T98G and HeLa cells were transfected with control shRNA or different sets of USP7 shRNAs. Cellular extracts were analyzed by Western blotting. (B) Experiments analogous to those in part (A) were performed in prostate cancer LNCaP and PC3 cell lines. (C) Left panel, DU145, PC3 and 293T cells were transfected with control shRNA or USP7 shRNA and then treated with DMSO or the proteasome inhibitor MG132 (10 μM). The cells were harvested and analyzed by Western blotting. Right panel, Quantitative results are illustrated for the left panel. (D) Left panel, 293T or T98G cells were transfected with control shRNA or USP7 shRNA, followed by addition of cycloheximide (CHX 50 μg/ml), and collected at different time points. Then, the samples were detected by IB. Right panel, Quantitative results are illustrated for the left panel.
lysates with Myc beads followed by IB with HA antibody suggested that deletion of USP7 increased the ubiquitination of EZH2 (Figure 3C). Similar results were observed in HeLa cells. IB with the antiub antibody indicated that USP7 knockdown promoted EZH2 ubiquitination (Figure 3D). To further ascertain whether the EZH2 stabilization promoted by USP7 is dependent on the enzymatic activity of USP7, we transfected the HeLa and 293T cells with mutant USP7/C223S or wild-type USP7. Western blotting analysis showed that EZH2 ubiquitination was increased in cells that had been transfected with USP7/C223S compared with that in cells transfected with wild-type USP7 (Figure 3E, 3F). Altogether, these results suggest that the stabilization of EZH2 promoted by USP7 is a consequence of USP7-mediated EZH2 deubiquitination.

USP7 promotes cell growth, cell migration and invasion

To investigate the function of the interaction between USP7 and EZH2, we performed a series of experiments in PC3 and DU145 prostate cancer cells. The prostate cancer cells were seeded into a 96-well plate and transfected with USP7 cDNA or USP7-shRNA and control vector. Then, 20 μl of CTG was added to each well and the results revealed that USP7 overexpression promoted cell proliferation, while the knock down of USP7 inhibited cell growth in prostate cancer cells (Figure 4A). The data indicated that USP7 overexpression promoted cell proliferation in prostate cancer cells. To further address the role of the USP7-EZH2 axis in prostate cancer cells, a migration assay was performed in PC3 and DU145 cells after transfection of USP7 cDNA, USP7-shRNA or control vector. Cellular migration was promoted by USP7 overexpression, and the number of cells that migrated into the scratch increased in both prostate cancer cell lines (Figure 4B). Moreover, the number of cells that migrated significantly decreased with USP7 knockdown in DU145 and PC3 cells (Figure 4C). Our data indicate that the migratory activity of prostate cancer cells was regulated by USP7. Next, we applied an invasion assay to detect the effect of USP7 overexpression on invasive ability. Our results showed that the number of cells that had invaded through the Matrigel-coated membrane was increased with USP7 overexpression (Figure 4D). When USP7 was deficient, cell invasion was decreased in PC3 and DU145 cells (Figure 4E). These results indicate that USP7 overexpression significantly promotes invasive activity in prostate cancer cells.

The USP7-EZH2 axis promotes cell migration, invasion and apoptosis

To further confirm the function of the USP7-EZH2 axis in prostate cancer cells, we transfected USP7 cDNA, EZH2-shRNA or a combination of both plasmids into prostate cancer cells, respectively. We found that the USP7 overexpression increased the number of migratory cells, while knockdown of EZH2 abolished migratory activity caused by USP7 overexpression (Figure 5A, 5B). Invasion assay was conducted to investigate the role of the interaction of USP7 and EZH2 in prostate cancer cell invasion. The data showed that the number of invasive cells was increased as a result of the USP7 overexpression, suggesting that USP7 overexpression improved the activity of cell invasion. The EZH2 knockdown antagonized the increased activity of cells caused by USP7 upregulation (Figure 5C, 5D). Next, we further dissected whether USP7-mediated cell apoptosis could be reversed by the downregulation of EZH2. In PC3 cells, the proportion of apoptotic cells decreased from 10% to 5.82% with USP7 overexpression, while the EZH2 deficiency converted the proportion of apoptotic cells to 10.54% (Figure 5E). These results indicate that USP7 inhibits cell apoptosis via EZH2 stabilization in prostate cancer cells.

USP7 downregulation suppresses prostate carcinogenesis in vivo

We constructed a stable USP7 knockdown cell line using USP7-shRNA in PC3 cells and injected the cells into nude mice with the same number of control cells. During the following weeks, the weight of mice and the volume of tumors were measured once every 2 d. Then, the mice were killed, and the tumors were resected, and the weight and size of the tumors were recorded (Figure 6A). According to the results, the volume of the tumors in the USP7 deletion group was much lower than that in the control group (Figure 6). Moreover, the weights of mice in the two groups were not sub-
USP7 stabilizes EZH2 level

To investigate the role of USP7 overexpression in carcinogenesis in depth, we performed mouse experiments. To this end, we established stable USP7-overexpressing cell lines using PC3 cells. USP7-overexpressing cells and control cells were injected into nude mice. Tumor growth and mouse weight were monitored for approximately about 6 weeks. Then the mice were killed and tumors were resected. Notably, the tumor growth and volume were greatly increased in USP7-overexpressing group (Figure 6C). Moreover, the weight of mice did not differ between these two groups (Figure 6B).
USP7 stabilizes EZH2 level

The immunohistochemical staining was performed on the resected tumors. We found that the staining of USP7 and EZH2 was much heavier in the USP7 overexpressing group than that in the control group, which suggested that USP7 and EZH2 were highly expressed in USP7-overexpressing tissues (Figure 6E). Collectively, these results strongly support a role of the USP7-EZH2 axis in promoting prostate carcinogenesis.

A correlation between USP7 and EZH2 expression is observed in prostate cancer tumor tissues

To further investigate the clinical relevance of USP7 and EZH2 in prostate cancer, we stained prostate cancer tissues for USP7 and EZH2. We found that USP7 was overexpressed in most prostate cancer clinical tissues. Moreover, we identified a correlation between USP7 and
USP7 stabilizes EZH2 level

Figure 5. The USP7-EZH2 axis promotes cell migration, invasion and apoptosis. A, B. Left panel, DU145 (A) and PC3 (B) cells were transfected with empty vector, USP7, EZH2-shRNA, or a combination of USP7 and EZH2-shRNA. Then, the cells were analyzed by the wound healing assay. Right panel, Quantitative results are illustrated for the left panel. *P<0.05 vs control, **P<0.01 vs control.

C, D. Left panel, Transwell chamber assays were performed with DU145 (C) and PC3 (D) cells that had been transfected with empty vector or USP7, EZH2-shRNA, or a combination of USP7 transfection and EZH2-shRNA. Right panel, Quantitative results are illustrated for the left panel.

E. Cell apoptosis was analyzed by FACS in PC3 and DU145 cells after transfection with empty vector, USP7, EZH2-shRNA, or a combination of USP7 transfection and EZH2-shRNA.
USP7 stabilizes EZH2 level

EZH2 expression in prostate cancer tumor tissue (Figure 6F, 6G).

Discussion

Emerging evidence has demonstrated that USP7 plays a crucial role in tumorigenesis [13, 26]. USP7 has been identified as a specific deubiquitinase for both p53 and Mdm2, and regulates p53 stabilization [27-29]. In line with this, one study showed that reduction in USP7 expression enhanced NSCLC (non-small cell lung cancer) carcinogenesis via a p53-depen-
USP7 stabilizes EZH2 level

EZH2 has been reported to have function in the progression of PCa [16], yet the exact mechanism remains elusive. In this study, from mouse xenograft and human PCa cells, we uncovered that USP7 plays a functional role in the elevation of EZH2 in PCa. The histone methylase EZH2 interacts with the deubiquitinase USP7 and is stabilized by it. Importantly, our results support a model in which USP7 overexpression results in a high level of EZH2 in PCa, and USP7 and EZH2 synergistically drive the tumorigenesis of PCa via deregulation of targeted genes. USP7 overexpression is associated with poor outcome in patients with glioma [36]. Similarly, USP7 overexpression correlated with malignant phenotype in lung squamous cell carcinoma and large cell carcinoma, suggesting that high USP7 levels predict a poor prognosis in lung cancer [37]. It has been found that overexpression of USP7 is correlated with poor prognosis in epithelial ovarian cancer [38, 39]. Notably, USP7 is overexpressed in prostate cancer and high levels of USP7 are directly associated with tumor aggressiveness [32]. Exploration whether the expression of USP7 in prostate tumor samples is associated with EZH2 levels is needed.

Several USP7 inhibitors have been developed for cancer treatment [40, 41]. For example, two vIRF4 (viral interferon regulatory factor 4)-derived peptides, vif1 and vif2, have been characterized as potent and selective USP7 antagonists [42]. Specifically, the vif1 peptide binds the USP7 TRAF domain to block substrate binding, whereas the vif2 peptide binds the TRAF and catalytic domains of USP7 to inhibit its deubiquitination activity [42]. These two peptide treatments led to p53-dependent cell cycle arrest and apoptosis and tumor regression due to blockade of USP7 [42]. Moreover, HBX 41,108, a small-molecular compound that inhibits deubiquitinating activity of USP7, induced elevated p53 and apoptosis in cancer cell lines [43, 44]. Later, HBX 19,818 and HBX 28,258 were identified as USP7 inhibitors [45]. The USP7 inhibitor P22077 inhibits neuroblastoma growth by inducing p53-induced apoptosis [46]. Interestingly, spongiancin C, a pyrrole alkaloid from the marine sponge stylissa massa, has been validated to be a USP7 inhibitor [47]. P5091, an inhibitor of USP7, induced apoptosis in multiple myeloma cells, inhibited tumor growth and prolonged survival [48]. Combining P5091 with lenalidomide or dexamethasone led to synergistic anti-multiple myeloma activity [48]. In line with this phenomenon, P5091 sensitizes cells to PARP-inhibitor drugs in lung neuroendocrine cancer cells [49]. One study also showed that P5091 inhibits Wnt signaling and colorectal tumor growth [50]. P22077 and P5091 induce apoptosis through oxidative and endoplasmic reticulum stress in human cancer cells [51]. Recently, P5091 was shown to sensitize cells to PARP inhibitors in hormone-sensitive and castration-resistant prostate cancer [52], suggesting that USP7 inhibitors could be useful for the treatment of human advanced prostate cancer.

Taken together, our work demonstrated a novel mechanism which EZH2 serves as a substrate for USP7 and showed that the stability of EZH2 is regulated by the deubiquitinase USP7 via deubiquitination in prostate tumorigenesis. Our results revealed that overexpression of USP7 could increase the metastatic invasive activity and enhance carcinogenesis in mice via stabilization of EZH2, which indicated that the USP7/EZH2 axis is critically involved in prostate cancer tumorigenesis. Therefore, targeting USP7/EZH2 could be a new therapeutic strategy to control the growth of prostate cancer.

Acknowledgements

This work was supported by Research Fund for Lin He’s Academician Workstation of New Medicine and Clinical Translation and Science and Technology Planning Project of Wenzhou city (No. Y20180082).
Disclosure of conflict of interest

None.

Address correspondence to: Zhiwei Wang, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China. E-mail: zwang6@bidmc.harvard.edu; Youhua He, Department of Urology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China. E-mail: feynnjwk@126.com

References

USP7 stabilizes EZH2 level

Supplementary Figure 1. QT-PCR was performed in PC3, DU145, LNCaP, 293T, HeLa and T98G cells with empty vector or USP7 cDNA or control shRNA or USP7 shRNA transfection.