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Abstract: Hepatocellular carcinoma (HCC) patients always have a background of cirrhosis. Aberrant epigenetic 
changes in cirrhosis provide a conductive environment for HCC tumorigenesis. Active enhancers (AEs) are essential 
for epigenetic regulation and play an important role in cell development and the progression of many diseases. 
However, the role of AEs in the progression from cirrhosis to HCC remains unclear. We systemically constructed a 
landscape of AEs that developed de novo in cirrhosis and were conserved in HCC, referred to as CL-HCC AEs. We 
observed significant upregulation of these CL-HCC AE-associated genes in cirrhosis and HCC, with no other epigen-
etic changes. Enrichment analysis of these CL-HCC AE-associated genes revealed enrichment in both hepatocyte-
intrinsic tumorigenesis and tumor immune response, which might contribute to HCC tumorigenesis. Analysis of 
the diagnostic ability of these CL-HCC AE-associated genes provided a five-gene (THBS4, OLFML2B, CDKN3, GA-
BRE, and HDAC11) diagnostic biomarker for HCC. Molecular subtype (MS) identification based on the CL-HCC AE-
associated genes identified 3 MSs. Samples representing the 3 MSs showed differences in CL-HCC AE-associated 
gene expression levels, prognosis, copy number variation (CNV)/mutation frequencies, functional pathways, tumor 
microenvironment (TME) cell subtypes, immunotherapy responses and putative drug responses. We also found that 
the BET bromodomain inhibitor JQ1 downregulated the expression of CL-HCC AE-associated genes. Collectively, our 
results suggest that CL-HCC AEs and their associated genes contribute to HCC tumorigenesis and evolution, and 
could be used to distinguish the different landscapes of HCC and help explore the mechanism, classification, predic-
tion, and precision therapy of HCC.

Keywords: Hepatocellular carcinoma, active enhancer, cirrhosis, classification, biomarkers, immunotherapy, im-
mune dysfunction, JQ1

Introduction

Hepatocellular carcinoma (HCC) is one of the 
most common cancers with high mortality 
worldwide. A large number of studies on the 
mechanisms of HCC initiation and development 
have helped to improve the diagnosis, treat-
ment and prognosis of HCC, but the goal is still 
far from reach [1]. HCC arises from chronic liver 
disease, fibrosis, and cirrhosis in 70-80% of 

patients [2], and recent studies have demon-
strated that early and progressive epigenetic 
changes in cirrhosis are a critical determinant 
of HCC tumorigenesis [3-5]. However, the lack 
of information regarding changes in the epig-
enome from normal liver (NL) to cirrhosis or 
HCC has limited our further knowledge of HCC 
tumorigenesis. Therefore, an in-depth explora-
tion of epigenetic changes from NL to cirrhosis 
and HCC may provide new insights into the 
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Table 1. Characteristics of the GEO datasets
GEO accession Platform Data type Number of samples
GSE112221 [4] GPL16791 RNA-seq, ChIP-seq, DNA methylation 

and 5-hydroxymethylation
4 HCC, 4 CL and 2 NL tissues

GSE54238 [38] GPL16955 Gene chip 26 HCC, 10 CL and 10 NL tissues
GSE25097 [39] GPL10687 Gene chip 268 HCC, 243 adjacent nontumor, 40 CL 

and 6 NL tissues
GSE44970 [40] GPL8490 DNA methylation chip 20 HCC, 8 CL and 8 NL tissues
GSE112679 [41] GPL18573 DNA 5-hydroxymethylation 1204 HCC, 392 CL, and 958 NL tissues
GSE124535 [75] GPL20795 RNA-seq 35 HCC and 35 nontumor tissues
GSE77509 [76] GPL16791 RNA-seq 19 HCC and 19 nontumor tissues
GSE94660 [77] GPL16791 RNA-seq 21 HCC and 21 nontumor tissues
GSE51143 [52] GPL6244 Gene chip HepG2 cells treated with DMSO or JQ1

mechanisms of HCC development and shed 
light on the identification of druggable epigen-
etic targets for the prevention and treatment of 
HCC.

A newly reported epigenetic modification 
referred to as active enhancers (AEs), marked 
by posttranslational modifications of both 
H3K27ac and H3K4me1, are defined as gene-
distal cis-regulatory sequences that are capa-
ble of inducing strong expression of their target 
genes [6, 7]. Several lines of evidence have 
shown that AEs are not only required for cell 
development, but also participate in cancer ini-
tiation and development [8-10]. Robertson et 
al. recently broadly profiled epigenetic regula-
tion during HCC progression and identified driv-
er events linked to epigenetic deregulation dur-
ing the initiation, progression and prognosis of 
HCC [4]. This study provided data on posttrans-
lational modifications of H3K27ac and 
H3K4me1 that helped define the evolutionary 
profiles of AEs from NL to cirrhosis and HCC [4]. 
Therefore, a systematic and deep review of the 
AE profiles of HCC initiation and progression 
will help us further understand the mecha-
nisms of HCC development and provide new 
theoretical evidence for HCC diagnosis, treat-
ment and prognosis.

In this study, we focused on the role of AEs that 
formed de novo in cirrhosis and were conserved 
in HCC, referred to as CL-HCC AEs. The data 
demonstrated that these AEs are major factors 
in the aberrant expression of their target genes 
and induce HCC tumorigenesis from cirrhosis in 
different ways. Furthermore, the target genes 
of these AEs play an important role in the diag-
nosis, molecular typing and precise treatment 

of HCC. Finally, we discuss potential treatments 
that could reduce or eliminate the aberrant 
expression of their target genes.

Materials and methods

Data collection

We gathered ten cohorts from the Gene Ex- 
pression Omnibus (GEO) (http://www.ncbi.nlm.
nih.gov/geo/) (Table 1). mRNA expression data 
and corresponding clinical information from the 
Cancer Genome Atlas (TCGA) pan-cancer 
cohort were retrieved from the UCSC Xena 
browser (https://xenabrowser.net/datapages/) 
[11]. Gene somatic mutation data of the TCGA-
LIHC cohort were retrieved using TCGAbiolinks 
[12]. DNA copy data of the TCGA-LIHC cohort 
were retrieved from Firehose (https://gdac.
broadinstitute.org/).

ChIP-Seq and Hi-C data processing

ChIP-seq reads were mapped to hg19. The 
SICER package was used to call the peaks [13]. 
The R package ChIPseeker (version 1.18.0) 
was used for peak annotation and comparison. 
AEs were identified by overlapping H3K27ac 
peaks and H3K4me1 peaks. DeepTools was 
used to visualize the ChIP-seq data [14]. 3D 
Genome Browser (http://promoter.bx.psu.edu/
hi-c/) was used to visualize the Hi-C data [15].

Enrichment analysis

EnrichR (https://amp.pharm.mssm.edu/Enric- 
hr/) was used for Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway and Gene On- 
tology (GO) enrichment analyses [16]. DisGeNET 
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(https://www.disgenet.org/) was used for dis-
ease enrichment analysis [17]. Gene sets of 10 
cancer hallmarks were downloaded from the 
CHG database (http://bio-bigdata.hrbmu.edu.
cn/CHG/nav_help.html), and a hypergeometric 
distribution was used to calculate the enrich-
ment degree [18].

Establishment of the diagnostic model

First, the R package caret (6.0-84) was used to 
divide samples into a training set and a test set 
[19]. Next, the R package glmnet (version 2.0-
18) was used to run the LASSO algorithm, 
which reduces the dimensions and selects fea-
tures of the training set [20]. Then, random for-
est (RF), support vector machine (SVM) and 
logistic regression (LR) were used to build clas-
sifiers based on the results of the LASSO algo-
rithm via the R packages glmnet (version 2.0-
18), randomForest (4.6-14) and e1071 (1.7-3), 
respectively [20-22]. The R package pROC (ver-
sion 1.15.3) was used to display the receiver 
operating characteristic (ROC) curves and cal-
culate the area under the curve (AUC) [23]. In 
the end, the best-performing classifier that had 
the highest AUC was utilized to examine the 
test set, external independent HCC datasets 
and TCGA pan-cancer dataset.

Estimation of immune cell infiltration

We used Microenvironment Cell Oopulation-
counter (MCPcounter) and Estimate the Pro- 
portion of Immune and Cancer cells (EPIC) to 
compute the immune cell infiltration using gene 
expression data from the GSE112221 and 
TCGA-LIHC datasets. The R packages MCPcoun- 
ter (version 1.1.0) and EPIC (version 1.1.5) 
were used to robustly quantify the immune 
cells [24, 25].

Copy number variation (CNV) and mutation 
analyses

Gene Pattern modules 2.0 (GISTIC) was used to 
investigate significant amplification or deletion 
events (CNVs) in the regions of the genome 
associated with HCC. The R package maftools 
was used to analyze mutations based on the 
TCGA-LIHC Mutect2 pipeline [26]. The tumor 
mutational burden (TMB) was calculated as the 
number of mutations per Mb in the genome for 
each patient based on the TCGA-LIHC Mutect2 
pipeline [27]. Predicted neoantigens for each 

patient were downloaded from The Cancer 
Imaging Archive (TCIA) dataset (https://tcia.at/
home) [28].

Gene set variation analysis (GSVA)

The R package GSVA, a nonparametric and 
unsupervised gene set enrichment method, 
was used to estimate the score of certain path-
ways or signatures for single HCC patients 
based on transcriptome data [29]. The KEGG 
pathway signatures (c2.cp.kegg.v7.0.symbols.
gmt) were downloaded from the Molecular 
Signatures Database (MSigDB; https://www.
gsea-msigdb.org/gsea/msigdb/index.jsp). The 
hypoxia signature (ACOT7, ADM, ALDOA, 
CDKN3, ENO1, LDHA, MIF, MRPS17, NDRG1, 
P4HA1, PGAM1, SLC2A1, TPI1, TUBB6 and 
VEGFA) and T cell dysfunction signature (TGFB1, 
CD274, CTLA4, IL10, PDCD1, CD276, HAVCR2, 
TNFRSF9, LAG3, TIGIT, and ICOS) were obtained 
from previously published studies [30, 31].

Identification of HCC molecular subtype (MS)

All 425 CL-HCC AE-associated genes were  
subjected to nonnegative matrix factoriza- 
tion (NMF) clustering using the R package 
CancerSubtypes (version 1.8.0) [32]. Before 
performing NMF, we calculated the expression 
of the genes associated with overall survival 
(OS) by univariate Cox analysis, and the genes 
with significant prognostic values (P < 0.005) 
were used for sample clustering. Then, we used 
the sum of squared error (SSE) to evaluate the 
best number of clusters, and the samples were 
classified into 3 MSs [33].

Gene set enrichment analysis (GSEA)

The R package clusterProfiler (3.10.1) was used 
to perform GSEA [34]. P < 0.05 was considered 
statistically significant.

Immunotherapy and drug responsiveness

The Tumor Immune Dysfunction and Exclusion 
(TIDE) tool (http://tide.dfci.harvard.edu/) was 
used to predict immunotherapy responsive-
ness [35]. The R package pRRophetic (version 
0.5) was used to predict drug sensitivity, which 
estimated the half-maximal inhibitory concen-
tration (IC50) for each sample by ridge regres-
sion, after which the prediction accuracy was 
evaluated by 10-fold cross-validation based on 
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the Genomics of Drug Sensitivity in Cancer 
(GDSC, https://www.cancerrxgene.org/) train-
ing set [36].

Statistical analysis

All computational and statistical analyses were 
performed using R (version 3.5.1). An unpaired 
Student’s t-test or the Wilcoxon test was used 
to compare the differences between 2 groups. 
One-way ANOVA was used to analyze the differ-
ences among 3 or more groups. The chi-square 
test was used to analyze contingency table vari-
ables. The Kaplan-Meier method was used to 
analyze the differences in prognosis, and then 
the log-rank test was used to test the signifi-
cance of prognosis. P < 0.05 was considered 
statistically significant.

Results

Identified CL-HCC AEs and their target genes

To investigate the implications of AE alterations 
in cirrhosis and hepatocarcinogenesis, we com-
pared the AE landscapes between NL, cirrhotic 
liver (CL) and HCC tissue. Based on the histone 
modifications of H3K27ac and H3K4me1 and 
gene expression, we identified 620 AEs associ-
ated with 483 genes that occur in cirrhosis and 
are maintained in HCC (Figure 1A). These 
CL-HCC AE regions showed stronger modifica-
tion of H3K27ac and H3K4me1 and weaker 
modification of H3K27me3 (an inactive enhanc-
er mark) and H3K4me3 (a primed enhancer 
mark, prior to activation) compared with other 
regions. In addition, the H3K27ac and 
H3K4me1 signals were stronger in CL and HCC 
than in NL (Figure 1B) [37]. For the mRNA 
expression of AE-associated genes, the mRNA 
expression of CL-HCC AE-associated genes was 
higher in CL and HCC than in NL in two indepen-
dent datasets (GSE54238 [38] and GSE25097 
[39]) (Figure 1C). 

To determine whether the expression of these 
CL-HCC AE-associated genes is related to DNA 
methylation or DNA mutations, we analyzed the 
DNA methylation levels by DNA methylation or 
5-hydroxymethylcytosine (5 hmC) using addi-
tional independent datasets. The data revealed 
that neither the DNA methylation nor 5 hmC 
levels of the CL-HCC AE-associated genes 
showed significant differences among NL, CL 
and HCC (DNA methylation: GSE112221 [4] 

and GSE44970 [40]; 5 hmc: GSE112221 [4] 
and GSE112679 [41]) (Figure 1D and 1E).

Enrichment analysis of the CL-HCC AE-as- 
sociated genes showed that these genes  
are mainly involved in tumor-associated path-
ways (e.g., pathways in cancer) and immune-
related pathways (e.g., positive regulation of T 
cell activation), which are two main conditions 
needed for the development of HCC (Figure 1F) 
[42].

All the evidence above demonstrates that the 
abnormal mRNA expression of these CL-HCC 
AE-associated genes in CL and HCC is mainly 
caused by CL-HCC AEs and may play an indis-
pensable role in HCC tumorigenesis.

The role of CL-HCC AEs and their target genes 
from CL to HCC

Because bulk ChIP-seq data of tumor tissues 
contain information from multiple cell types, 
including tumor cells and other stromal or 
immune cells in the tumor microenvironment 
(TME), we further explored the role of CL-HCC 
AEs and CL-HCC AE-associated genes in differ-
ent cell types. We divided these CL-HCC AEs 
and their associated genes into two subtypes 
according to the absence or presence of the 
CL-HCC AEs in HepG2 cell AEs, an HCC cell line 
(Figure 2A).

In total, 389 CL-HCC AEs overlapped with AEs 
in HepG2 cells, indicating their specificity to 
hepatoma carcinoma cells but not as hepato-
cyte-intrinsic CL-HCC AEs. The Hi-C data 
showed that the hepatocyte-intrinsic CL-HCC 
AEs were closely correlated with their associat-
ed genes in HepG2 cells (Figure 2B). Further 
analysis revealed that the hepatocyte-intrinsic 
CL-HCC AE-associated genes were significantly 
involved in cancer hallmarks (Figure 2C). The 
hepatocyte-intrinsic CL-HCC AE-associated 
genes were also enriched in cancer among all 
the disease classes and cancer development 
(Figure 2D).

In contrast, 231 CL-HCC AEs did not overlap 
with HepG2 cell AEs, which might be related to 
the non-tumor cells in the HCC TME; we refer to 
these AEs as TME-related CL-HCC AEs. GO bio-
logical process (BP) analysis of the TME-related 
CL-HCC AE-associated genes revealed enrich-
ment of immune-related biological processes, 
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Figure 1. Identified CL-HCC AEs and their characteristics. (A) Identified CL-HCC AEs. First, common AEs were ac-
quired from both patients with cirrhosis and those with HCC. Then, AE-associated genes that were upregulated in 
both CL and HCC were identified. Venn diagrams (left) depicting the unique and overlapping AEs in NL (blue), CL (yel-
low), and HCC (red). Scatter plot (right) shows the fold change of genes in CL and HCC compared with NL. AEs with a 
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fold change (FC) > 1.5 in both CL and HCC are shown (red plots). (B) Epigenetic characteristics of CL-HCC AEs. Line 
chart shows the average H3K27ac, H3K4me1, H3K27me3 and H3K4me3 signals in the CL-HCC AE region with 3 
kb surrounding DNA in NL (blue), cirrhotic (yellow), and HCC (red) tissues. Heatmap showing the H3K27ac (orange), 
H3K4me1 (blue), H3K27me3 (green) and H3K4me3 (purple) signals in the CL-HCC AE region with 3 kb surrounding 
DNA in NL (top), CL (middle) and HCC (bottom) tissues. Box plots of the expression (C), methylation level (D), and 
5 hmc level (E) of CL-HCC AE-associated genes in NL (blue), CL (yellow) and HCC (red) tissues based on different 
datasets. (F) KEGG (orange) and GO BP (light blue) enrichment analyses of the AE-associated genes. An unpaired 
Student’s t-test was used to assess the difference. NS. no significance P > 0.05; ***P < 0.001.

such as immune system differentiation, cellular 
response to chemokines, and adhesion (Figure 
2E).

To further explore changes in the immune sys-
tem from NL to HCC and the relationship of 
TME-related CL-HCC AE-associated genes, we 
next analyzed the difference in immune cell 
infiltration among NL, CL and HCC samples 
based on two different algorithms, EPIC [24] 
and MCPcounter [25], from two independent 
datasets. The results showed that CD8+ T cell 
infiltration was significantly increased in CL and 
HCC samples compared with NL samples, con-
sistent with previous studies (Figure 2F) [43]. 
Further analysis of most of the TME-related 
CL-HCC AE-associated genes revealed a corre-
lation to CD8+ T cell infiltration based on the 
GSE112221 dataset (Figure 2G). Most of these 
genes are co-expressed with PD-1, CTLA4 and 
TIM-3, which are immune checkpoints during 
CD8+ T cell exhaustion (Figure 2H).

The above findings demonstrated that CL-HCC 
AEs play an intricate and important role in 
hepatocarcinogenesis from CL to HCC. Some 
oncogenes might be activated by hepatocyte-
intrinsic CL-HCC AEs during the CL stage and 
continue to promote robust transcription in 
HCC, initiating malignant transformation and 
sustaining cancer cell growth. In addition, TME-
related CL-HCC AEs might participate in chang-
es in the TME, especially those involved in CD8+ 
T cell infiltration and exhaustion. Overall, these 
combined effects of CL-HCC AEs ultimately par-
ticipate in HCC oncogenesis.

Potential diagnostic ability of CL-HCC AE-asso-
ciated genes for HCC

CL-HCC AE-associated genes were abnormally 
upregulated before hepatocarcinogenesis, and 
CL-HCC AEs were identified from HCC patients 
with a background of cirrhosis and were paired, 
suggesting their diagnostic capability in HCC. 
To assess the potential clinical utility of CL-HCC 

AE-associated genes, we first randomly divided 
the TCGA-LIHC samples into training and test 
sets. We next reduced the dimensions of the 
training set using the LASSO algorithm and 
then applied three machine learning algo-
rithms, RF, SVM and LR [44], to evaluate their 
diagnostic ability based on AUC through five-
fold cross-validation. Lastly, we examined the 
diagnostic ability of the best machine learning 
model with external independent data on HCC 
(Figure 3A). As expected, we found that the 
expression of CL-HCC AE-associated genes 
could accurately classify normal and HCC tis-
sues (RF AUC = 0.883, SVM AUC = 0.930, LR 
AUC = 0.951, Figure 3B). Then, the best-per-
forming algorithm, LR, which includes 5 genes 
(THBS4, OLFML2B, CDKN3, GABRE, and 
HDAC11), achieved a high AUC on the test set 
(0.998) (Figure 3C). The LR model based on the 
5 CL-HCC AE-associated genes could predict 
the occurrence of HCC (Figures 3D-G). 

These results suggest that this 5-gene LR 
model of CL-HCC AE-associated genes could 
act as a potential diagnostic biomarker of HCC.

MS identification based on CL-HCC AE-associ-
ated genes

To better understand the role of CL-HCC 
AE-associated genes in HCC heterogeneity, 370 
HCC patients were clustered based on the 
expression of these genes by executing con-
sensus NMF, and we identified 3 HCC MSs 
(Figure 4A) [32]. The mRNA expression levels of 
the CL-HCC AE-associated genes were signifi-
cantly different among the different MSs, as fol-
lows: subclass MS1 showed the highest mRNA 
expression of the CL-HCC AE-associated genes 
and MS2 showed the lowest (Figure 4B). 
Furthermore, we analyzed the prognostic 
capacity of HCC based on the 3 HCC MSs, and 
a significant prognostic difference was 
observed in the OS (log-rank test P = 0.004) 
and recurrence-free survival (RFS) (log-rank 
test P = 0.01) (Figure 4C and 4D). Further  
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Figure 2. Different roles of CL-HCC AE-associated genes from CL to HCC. A. Venn diagrams depicting the overlapping and nonoverlapping AEs in HepG2 cells (left, 
red) and CL-HCC AEs (right, blue). A total of 389 AEs overlapped with those in HepG2 cells, whereas 231 did not. B. Hi-C interaction frequency (normalized interaction 
counts) and genomic coordinates comprising a portion of a topological domain in HepG2 cells. C. Enrichment analysis of hepatocyte-intrinsic CL-HCC AE-associated 
genes and the 10 hallmarks of cancer. A hypergeometric distribution was used to calculate the enrichment degree. *P < 0.05, **P < 0.01, ***P < 0.001, gray 
color indicates no significance. D. Enrichment analysis of hepatocyte-intrinsic CL-HCC AEs in the disease class. E. Enrichment map for the GO BP enrichment results 
of the TME-related CL-HCC AE-associated genes. Each node represents a GO BP term. F. CD8 T cell infiltration in NL (blue), CL (yellow) and HCC (red) tissues in 
the GSE112221 (left) and GSE54238 (right) datasets based on EPIC (top) and MCPcounter (bottom). G. Correlation of the expression of TME-related CL-HCC AE-
associated genes and CD8 T cell infiltration in the GSE112221 dataset. H. Correlation of the expression of TME-related CL-HCC AE-associated genes and CD8 T cell 
exhaustion markers (PD-1, CTLA4 and TIM-3). Genes with a correlation coefficient > 0.7 are shown in the figure.
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Figure 3. Potential diagnostic ability of CL-HCC AE-associated genes in HCC and other cancers. (A) Flowchart de-
scribing the schematic overview of the design. First, the TCGA-LIHC dataset (n = 424) was divided into training (n = 
296) and test (n = 128) sets. Second, the LASSO algorithm was used to reduce the dimensions of the training set. 
Then, classifiers were built through five-fold cross-validation within the training set. The best-performing classifier 
(LR model) was used to examine the test set, external independent HCC datasets. (B) ROC curves of the training set 
based on three machine learning algorithms. ROC curves of the test set (C), ICGC (D), GSE124535 (E), GSE77509 
(F), and GSE94600 (G).

comparisons among the three groups reveal- 
ed significantly different OS and RFS out- 
comes among MS1-MS2 and MS3-MS2,  
but there was no significant difference in  
the outcomes between MS1 and MS3 (Figure 
4E-J).

DNA copy number and mutation spectrum 
among different MSs

To further identify the differences between the 
above-established MSs, we determined the 
numbers of CNVs (i.e., gains and losses) for 
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spectrum analysis showed a significantly lower 
mutation frequency of TP53 in MS2, but TTN, 
CTNNB1, MUC16 and PCLO showed a higher 
mutation frequency in MS2 than in MS1 and 
MS3 (Figure 5D).

Previous studies have revealed that DNA muta-
tions are significantly associated with both pre-

each sample (Figure 5A) and found significant 
differences among the three subtypes. MS1 
and MS3 had more CNV gains and losses than 
MS2 by the chi-square test (Figure 5B). The 
mutation spectrum of the top 20 genes with 
the highest mutation rate in various MSs 
showed significant differences by the chi-
square test (P < 0.0001) (Figure 5C). Mutation 

Figure 4. MSs based on the expression of CL-HCC AE-associated genes. A. 
NMF-based clustering. B. Box plot of the expression of CL-HCC AEs in the 
three MSs. C. Kaplan-Meier overall survival curve of the three MSs. D. Ka-
plan-Meier recurrence-free survival curve of the three MSs. E. Kaplan-Mei-
er overall survival curve for MS1 and MS2. F. Kaplan-Meier overall survival 
curve for MS2 and MS3. G. Kaplan-Meier overall survival curve for MS1 
and MS3. H. Kaplan-Meier recurrence-free survival curve for MS1 and 
MS2. I. Kaplan-Meier recurrence-free survival curve for MS2 and MS3. J. 
Kaplan-Meier recurrence-free survival curve for MS1 and MS3. Different 
colors represent different MSs: MS1 (red), MS2 (green) and MS3 (blue). 
One-way ANOVA was used to analyze the differences. ***P < 0.001.
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dicted TMB and neoantigens, which has 
emerged as a promising biomarker for the 
immunotherapy response in cancer patients 
and are capable of inducing tumor-specific T 
cell recognition, respectively [45-47]. In the 
current study, the data revealed that both pre-
dicted TMB and neoantigens were higher in 
MS2 than in MS1 (Figure 5E and 5F).

All these data suggest that the MSs have differ-
ent CNVs and mutation landscapes and may 
have different responses to immunotherapy.

Characterization of the MSs involved in differ-
ent functional pathways and TME constituents

We next characterized the functional pathway 
differences among the 3 MSs by ssGSEA. ssG-
SEA of the KEGG pathways showed that many 
pathways related to the immune response  
and metabolism were different among the 
above 3 MSs (Figure 6A). Alterations in numer-
ous immune response-associated pathways 
prompted us to then explore differences in the 
TME constituents among the 3 MSs by charac-
terizing the ratio of various immune cell sub-
sets as well as stromal-related cell subtypes in 
the TME [25]. The data showed that 10 immune- 
and stromal-related cell subtypes, including T 
cells, CD8 T cells, cytotoxic lymphocytes, NK 
cells, B lineage cells, monocyte lineage cells, 
myeloid dendritic cells, neutrophils, endothelial 
cells, and fibroblasts, had more infiltration in 
MS1 than in MS2 and MS3 (Figure 6B). 
Although many immune cells infiltrated in MS1 
and MS3, MS1 and MS3 were associated with 
a higher hypoxia state of the TME than MS2, 
which often limits anticancer immunity (Figure 
6C). Predictably, many immune cells will infil-
trate in MS1 and MS3, but more T cells may 
become dysfunctional in MS1 and MS3 (Figure 
6D).

Differential immunotherapy and putative drug 
responses according to MS

Differences in the TMB, neoantigens and TME 
constituents of the subtypes prompted us to 
further investigate differences in the TME con-
stituents and the likelihood of responding to 
immuno-oncology therapy [48]. The results 
showed higher sensitivity to immunotherapies 
for MS2 than MS1 and MS3 (Figure 7A) [35]. 
For further research into precision therapy for 
HCC patients, we evaluated the putative drug 

responses [49]. As chemotherapy and molecu-
lar targeted therapy are important steps in the 
comprehensive treatment of HCC patients, we 
aimed to assess the response of the 3 MSs to 
three classic chemotherapy drugs (docetaxel, 
paclitaxel and cisplatin) and three classic 
molecular targeted drugs (gefitinib, cytarabine 
and bortezomib) [50]. We observed a signifi-
cant difference in the estimated IC50 values 
among the 3 MSs for the 3 chemotherapy drugs 
and 3 molecular targeted drugs (Figure 7B and 
7C). MS3 was more sensitive to commonly 
administered chemotherapies and molecular 
targeted therapies, except for bortezomib. MS1 
showed decreased sensitivity to chemotherapy 
treatment but increased sensitivity to molecu-
lar targeted therapies.

These results suggest that the MSs established 
by the CL-HCC AE-associated genes have differ-
ent responses to immunotherapies, chemo-
therapy drugs and molecular targeted drugs, 
which could be helpful for precision therapy 
and immunotherapy for HCC patients.

The mRNA levels of hepatocyte-intrinsic CL-
HCC AE-associated genes were significantly 
downregulated in HepG2 cells after treatment 
with the BET bromodomain inhibitor JQ1

According to the above data, the high expres-
sion of CL-HCC AE-associated genes tends to 
play a role in promoting cancer and suppress-
ing immunity. To identify drugs that could down-
regulate the expression of these CL-HCC 
AE-associated genes, we further analyzed the 
mRNA expression levels of the hepatocyte-
intrinsic CL-HCC AE-associated genes in HepG2 
cells treated with 0.5 µM JQ1, a BET bromodo-
main inhibitor that could reduce the frequency 
of AEs and the expression of their associated 
genes [51, 52]. GSEA showed that these genes 
were significantly downregulated after JQ1 
treatment (Figure 8).

Discussion

Epigenetic alterations in AEs and their malfunc-
tion have been recognized as driving causes of 
tumorigenesis and progression [53, 54]. 
Previous studies have shown that the de novo 
acquisition of AEs correlates with cancer-relat-
ed pathways and is associated with prognosis 
[4]. In the current study, by performing an inte-
grated analysis of the histone posttranslational 
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Figure 5. CNV and mutation spectrum of the MSs. (A) Composite copy number profiles for MS1, MS2 and MS3, with gains in red and losses in blue. (B) CNV distribu-
tion of all genes among the three MS; each color indicates a different type of CNV. (C) Profiles of the top 20 significant mutations across the MSs. (D) Distribution 
pattern of the top 20 significant mutations among the three MSs. Comparison of TMB (E) and predicted neoantigens (F) among the three MSs. Different colors 
represent different MSs: MS1 (red), MS2 (green) and MS3 (blue). The chi-square test was used to analyze the differences in CNVs and mutations among the MSs. 
An unpaired Student’s t-test was used to assess the differences in TMB, and the Wilcoxon test was used to assess the differences in predicted neoantigens. *P < 
0.05, **P < 0.01, ***P < 0.001.
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Figure 6. Characterization and tumor microenvironment of the MSs. (A) Heatmap of the enrichment level calculated by single sample gene set enrichment analysis 
for the top 10 significantly different KEGG immune-related pathways and metabolism-related pathways among the three MSs derived from GSEA. (B) Box plot shows 
different immune cell enrichment levels among the three MSs. Comparison of hypoxia scores (C) and T cell dysfunction (D) (one-way ANOVA) among the three MSs. 
Different colors represent different MSs: MS1 (red), MS2 (green) and MS3 (blue). One-way ANOVA was used to analyze the differences. *P < 0.05, **P < 0.01, 
***P < 0.001.
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stic biomarkers [55]. By using 
CL-HCC AE-associated gene ex- 
pression profiles, we establish- 
ed a five-gene LR model that 
showed reliable diagnostic capa-
bility for HCC, with high sensiti- 
vity and specificity. All five gen- 
es, namely, THBS4, OLFML2B, 
CDKN3, GABRE and HDAC11, 
have been reported to be inde-
pendent diagnostic biomarkers 
for cancer [56-60]. Therefore, 
CL-HCC AE-associated genes 
could be used to search for new 
diagnostic biomarkers to provide 
a new strategy for HCC diagnosis 
and to forecast the incidence of 
HCC at the stage of cirrhosis.

Although many studies on HCC 
subtype classifications based on 
gene expression or epigenetics 
have been proposed in recent 
years, there has not yet been a 
consensus [61-63]. In this study, 
we identified HCC MSs based on 
CL-HCC AE-associated genes. We 
identified three MSs of HCC 
(MS1, MS2, and MS3) and then 

Figure 7. Immunotherapy response and putative drug response of the MSs. Comparison of the predicted response 
to immunotherapy (A) (Fisher’s exact test), classic chemotherapy drugs (B) and classic molecular targeted drugs (C). 
One-way ANOVA was used to analyze the differences. *P < 0.05, **P < 0.01, ***P < 0.001.

modifications of H3K27ac and H3K4me1 from 
NL to CL and HCC, We systemically studied the 
function and potential clinical effects of CL-HCC 
AEs that are absent in normal liver tissue and 
are de novo acquired in cirrhosis and sustained 
during HCC development. By comparing with 
CL-HCC AEs and HepG2 AEs, we divided the 
CL-HCC AEs into hepatocyte-intrinsic CL-HCC 
AEs and TME-related CL-HCC AEs. We believe 
that CL-HCC AEs can direct the activation of 
their associated genes and contribute to HCC 
development by regulating both hepatocyte-
intrinsic tumorigenesis and the tumor immune re- 
sponse. ROC curve analysis and MS identifica-
tion demonstrated that the CL-HCC AE-associat- 
ed genes show potential diagnostic and preci-
sion therapy power for HCC.

HCC patients are often diagnosed at advanced 
stages because of the lack of sufficient diagno- 

explored their differences in prognosis, CNV 
and mutation, functional pathways, TME cell 
subtypes, immunotherapy responses and puta-
tive drug responses. The results showed that 
MS1 displayed the highest expression of the 
CL-HCC AE-associated genes, increased hypox-
ia and maximum immune cell infiltration but 
serious T cell dysfunction and a poor prognosis. 
MS2 showed the lowest expression of the 
CL-HCC AE-associated genes, the lowest inflam-
matory conditions and preserved the default 
metabolic program of NL. This subtype showed 
good immunotherapeutic sensitivity and the 
best prognosis. MS3, with median expression 
levels of the CL-HCC AE-associated genes, had 
most features falling somewhere between 
those of MS1 and MS2. MS3 show- 
ed a worse prognosis than MS2 but not  
MS1. However, MS3 was highly sensitive to all  
chemotherapy and molecular targeted drugs 

Figure 8. GSEA of hepatocyte-intrinsic CL-HCC AE-associated genes in 
HepG2 cells treated with the BET inhibitor JQ1. GSEA plots, normalized 
enrichment scores (NESs) and p values are shown for the hepatocyte-
intrinsic CL-HCC AE-associated gene sets in HepG2 cells treated with JQ1.
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except for bortezomib. Therefore, our data sug-
gest that MS identification based on CL-HCC 
AE-associated genes could be used to guide 
the therapeutic strategy (i.e., chemotherapy, 
molecular targeted therapy and immunothera-
py) for HCC patients.

Immunotherapy is considered a promising 
approach for HCC patients; however, only a 
small proportion of HCC patients benefit from it 
[64, 65]. Therefore, it is urgent to develop a 
more accurate MS identification to determine 
the efficiency prediction of immunotherapy [66, 
67]. A previous study showed that both 
H3K4me1 and H3K27ac, marked AEs, increase 
PD-1 expression through the combined stimu-
lation of TCR and cytokines [67]. Our data 
showed that many CL-HCC AE-associated genes 
are positively correlated with PD-1 expression; 
predictably, the high expression of these genes 
was determined to be involved in CD8+ T cell 
dysfunction in HCC. In our study, although the 
TME of MS1 patients contained abundant CD8+ 
T cells and NK cells, the simultaneous pres-
ence of a large number of immunosuppressive 
cells and a hypoxic status promoted an immu-
nosuppressive microenvironment [68]. The 
combination of these effects ultimately led to a 
poor response to immunotherapy in MS1 
patients. MS2 patients had lower expression of 
the CL-HCC AE-associated genes and showed 
higher sensitivity to immunotherapy. This might 
be because the TME of MS2 patients predicts 
higher neoantigen exposure that could induce 
better antitumor immune responses, better T 
cell function, and less inflammation [69]. As 
such, our data provide another option for pre-
dicting the immune therapy response of HCC 
patients based on CL-HCC AE-associated gene-
directed MS identification.

Bromodomain containing 4 (BRD4) is enriched 
in AEs and controls the induction of gene 
expression [51, 70]. JQ1 is a noteworthy anti-
cancer drug that inhibits BET bromodomains 
and reduces the development of AEs as well as 
the expression of their associated genes [71, 
72]. Ronald M et al. found that JQ1 can protect 
and reverse the fibrotic response in carbon tet-
rachloride-induced fibrosis in mouse models 
[73]. JQ1 can also enhance both T cell persis-
tence and function when combined with immu-
notherapy [74]. However, the mechanistic  
linkage of JQ1 and the immunotherapy re- 
sponse is still not clear. We found that CL-HCC 

AE-associated genes were significantly down-
regulated in JQ1-treated HepG2 cells. There- 
fore, our data provide evidence for the potential 
of applying JQ1 for HCC treatment, which might 
show dual roles in both the direct inhibition of 
cancer cell growth and an improvement in the 
immunotherapy response.

In conclusion, we comprehensively explored 
CL-HCC AEs and their target genes in HCC. We 
demonstrate that alterations in CL-HCC AEs 
and their target genes play critical roles in HCC 
initiation, development and the therapeutic 
response. CL-HCC AE-associated genes could 
be specific for identifying biomarkers, classifi-
cation and therapeutic predictions of HCC. In 
general, we provide new perspectives that 
CL-HCC AE-associated genes can distinguish 
the different landscapes of HCC and help to 
explore the mechanism, classification and pre-
cision therapy of HCC.
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